Ka-band stacked and pseudo-differential orthogonal load-modulated balanced power amplifier in 22 nm CMOS FDSOI

被引:0
作者
Rusanen, Jere [1 ]
Sethi, Alok [1 ]
Tervo, Nuutti [1 ]
Kiuru, Veeti [1 ]
Rahkonen, Timo [1 ]
Parssinen, Aarno [1 ]
Aikio, Janne P. [1 ]
机构
[1] Univ Oulu, Fac Informat Technol & Elect Engn, Oulu, Finland
基金
芬兰科学院;
关键词
active matching; fifth generation (5G); fully depleted silicon-on-insulator (FDSOI); millimeter-wave (mmWave); power amplifier; stacked power amplifier; LINK BUDGET; TECHNOLOGY; LINEARITY; DESIGN;
D O I
10.1017/S1759078723001137
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an integrated power amplifier (PA) following the orthogonal load-modulated balanced amplifier (OLMBA) topology. The fixed-phase prototype in this paper is implemented with 22 nm complementary metal oxide semiconductor (CMOS) fully depleted silicon-on-insulator (FDSOI) process. The proposed PA operates at 26 GHz frequency range, where it achieves 19.5 dBm output power, 16.6 dB gain, 15.7% power added efficiency, and 18.3 dBm output 1-dB compression point ($P_{\rm 1\,dB}$). The PA is also tested with high dynamic range modulated signals, and it achieves, respectively, 11.4 dBm and 4.9 dBm average output power (Pavg) with 100 MHz and 400 MHz 64-QAM third-generation partnership project/new radio frequency range 2 signals, and 14 dBm Pavg with 0.6 Gb/s (120 MHz) single carrier 64-QAM signal, measured at 26 GHz and using -28 dBc adjacent channel leakage ratio and -21.9 dB (8%) error vector magnitude as threshold values. The proposed OLMBA is also compared to a stand-alone quadrature-balanced PA. Modulated measurements show that the stand-alone quadrature-balanced PA has better linearity in deep back-off, but the OLMBA has better efficiency.
引用
收藏
页码:763 / 770
页数:8
相关论文
共 32 条
  • [1] 3 GPP, 2023, 38104 3GPP TS
  • [2] Power Amplifiers for mm-Wave 5G Applications: Technology Comparisons and CMOS-SOI Demonstration Circuits
    Asbeck, Peter M.
    Rostomyan, Narek
    Ozen, Mustafa
    Rabet, Bagher
    Jayamon, Jefy A.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (07) : 3099 - 3109
  • [3] Bumman Kim, 2017, 2017 10th Global Symposium on Millimeter-Waves (GSMM), P80, DOI 10.1109/GSMM.2017.7970326
  • [4] A Review of Technologies and Design Techniques of Millimeter-Wave Power Amplifiers
    Camarchia, Vittorio
    Quaglia, Roberto
    Piacibello, Anna
    Nguyen, Duy P.
    Wang, Hua
    Pham, Anh-Vu
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (07) : 2957 - 2983
  • [5] Chappidi Chandrakanth R., 2020, 2020 IEEE/MTT-S International Microwave Symposium (IMS), P1101, DOI 10.1109/IMS30576.2020.9224038
  • [6] The Orthogonal LMBA: A Novel RFPA Architecture With Broadband Reconfigurability
    Collins, David J.
    Quaglia, Roberto
    Powell, Jeff R.
    Cripps, Steve C.
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2020, 30 (09) : 888 - 891
  • [7] Ericsson ConsumerLab, 2023, 10 HOT CONS TRENDS 2
  • [8] A 28-GHz Beamforming Doherty Power Amplifier With Enhanced AM-PM Characteristic
    Fang, Xiaohu
    Xia, Jingjing
    Boumaiza, Slim
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (07) : 3017 - 3027
  • [9] Large-Scale Antenna Systems with Hybrid Analog and Digital Beamforming for Millimeter Wave 5G
    Han, Shuangfeng
    Chih-Lin, I
    Xu, Zhikun
    Rowell, Corbett
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2015, 53 (01) : 186 - 194
  • [10] A 26-to-60GHz Continuous Coupler-Doherty Linear Power Amplifier for Over-An-Octave Back-Off Efficiency Enhancement
    Huang, Tzu-Yuan
    Mannem, Naga Sasikanth
    Li, Sensen
    Jung, Doohwan
    Huang, Min-Yu
    Wang, Hua
    [J]. 2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 : 354 - +