Periodic Steiner Networks Minimizing Length

被引:1
作者
Alex, Jerome [1 ]
Grosse-Brauckmann, Karsten [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
关键词
Triply periodic network; Length minimizer; srs network; Laves network; Gyroid; CURVATURE; CHEMISTRY;
D O I
10.1007/s00454-023-00576-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study a problem of geometric graph theory: We determine the triply periodic graph in Euclidean 3-space which minimizes length among all graphs spanning a fundamental domainwith the same volume. Theminimizer is the so-called srs network with quotient the complete graph on four vertices K-4. For comparison we consider a competing topological class, also with a quotient on four vertices, and determine the minimizing ths networks.
引用
收藏
页码:1145 / 1168
页数:24
相关论文
共 17 条
[1]  
Alex J., 2019, ARXIV
[2]  
[Anonymous], SURVEYS TUTORIALS AP
[3]  
Coxeter HSM., 1955, Canad. Jour. Math., V7, P18, DOI [DOI 10.4153/CJM-1955-003-7, 10.4153/CJM-1955-003-7]
[4]   Minimal nets and minimal minimal surfaces [J].
de Campo, Liliana ;
Delgado-Friedrichs, Olaf ;
Hyde, Stephen T. ;
O'Keeffe, Michael .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2013, 69 :483-489
[5]  
GrosseBrauckmann K, 1996, CALC VAR PARTIAL DIF, V4, P499, DOI 10.1007/s005260050052
[6]   On gyroid interfaces [J].
GrosseBrauckmann, K .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 187 (02) :418-428
[7]  
Hardy G., 1959, Inequalities
[8]   A Short History of an Elusive Yet Ubiquitous Structure in Chemistry, Materials, and Mathematics [J].
Hyde, Stephen T. ;
O'Keeffe, Michael ;
Proserpio, Davide M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (42) :7996-8000
[9]  
Ivanov AlexandrO., 1994, Minimal networks
[10]  
Kotani M, 2000, T AM MATH SOC, V353, P1