Deep learning-based fluorescence image correction for high spatial resolution precise dosimetry

被引:0
|
作者
Nomura, Yusuke [1 ]
Ashraf, M. Ramish [1 ]
Shi, Mengying [1 ,2 ]
Xing, Lei [1 ]
机构
[1] Stanford Univ, Dept Radiat Oncol, Stanford, CA 94305 USA
[2] Univ Calif Irvine, Dept Radiat Oncol, Orange, CA 92868 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2023年 / 68卷 / 19期
基金
美国国家卫生研究院;
关键词
radiation dosimetry; fluorescence imaging; deep learning; image denoising; SCINTILLATION DOSIMETRY; PHOTON BEAMS; 2D; SENSITIVITY; TOMOGRAPHY; NOISE;
D O I
10.1088/1361-6560/acf182
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. While radiation-excited fluorescence imaging has great potential to measure absolute 2D dose distributions with high spatial resolution, the fluorescence images are contaminated by noise or artifacts due to Cherenkov light, scattered light or background noise. This study developed a novel deep learning-based model to correct the fluorescence images for accurate dosimetric application. Approach. 181 single-aperture static photon beams were delivered to an acrylic tank containing quinine hemisulfate water solution. The emitted radiation-exited optical signals were detected by a complementary metal-oxide semiconductor camera to acquire fluorescence images with 0.3 x 0.3 mm2 pixel size. 2D labels of projected dose distributions were obtained by applying forward projection calculation of the 3D dose distributions calculated by a clinical treatment planning system. To calibrate the projected dose distributions for Cherenkov angular dependency, a novel empirical Cherenkov emission calibration method was performed. Total 400-epoch supervised learning was applied to a convolutional neural network (CNN) model to predict the projected dose distributions from fluorescence images, gantry, and collimator angles. Accuracy of the calculated projected dose distributions was evaluated with that of uncorrected or conventional methods by using a few quantitative evaluation metrics. Main results. The projected dose distributions corrected by the empirical Cherenkov emission calibration represented more accurate noise-free images than the uncalibrated distributions. The proposed CNN model provided accurate projected dose distributions. The mean absolute error of the projected dose distributions was improved from 2.02 to 0.766 mm & BULL;Gy by the CNN model correction. Moreover, the CNN correction provided higher gamma index passing rates for three different threshold criteria than the conventional methods. Significance. The deep learning-based method improves the accuracy of dose distribution measurements. This technique will also be applied to optical signal denoising or Cherenkov light discrimination in other imaging modalities. This method will provide an accurate dose verification tool with high spatial resolution.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Cloud and deep learning-based image analyzer
    Kumar, Sunil
    Gautam, Kartik
    Singhal, Vatsal
    Sharma, Nitin
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [22] Deep learning-based solar image captioning
    Baek, Ji-Hye
    Kim, Sujin
    Choi, Seonghwan
    Park, Jongyeob
    Kim, Dongil
    ADVANCES IN SPACE RESEARCH, 2024, 73 (06) : 3270 - 3281
  • [23] Deep Learning-based Weather Image Recognition
    Kang, Li-Wei
    Chou, Ke-Lin
    Fu, Ru-Hong
    2018 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2018), 2018, : 384 - 387
  • [24] Deep learning-based spam image filtering
    Salama, Wessam M.
    Aly, Moustafa H.
    Abouelseoud, Yasmine
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 68 : 461 - 468
  • [25] Deep Learning-Based Blind Image Super-Resolution using Iterative Networks
    Yaar, Asfand
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [26] Performance Analysis of JPEG XR with Deep Learning-Based Image Super-Resolution
    Min, Taingliv
    Aramvith, Supavadee
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1192 - 1197
  • [27] Deep learning-based image super-resolution considering quantitative and perceptual quality
    Choi, Jun-Ho
    Kim, Jun-Hyuk
    Cheon, Manri
    Lee, Jong-Seok
    NEUROCOMPUTING, 2020, 398 (398) : 347 - 359
  • [28] Accelerating topology optimization using deep learning-based image super-resolution
    Lim, Jaekyung
    Jung, Kyusoon
    Jung, Youngsuk
    Kim, Do-Nyun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [29] Impact of deep learning-based image super-resolution on binary signal detection
    Zhang, Xiaohui
    Kelkar, Varun A.
    Granstedt, Jason
    Li, Hua
    Anastasio, Mark A.
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (06)
  • [30] Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review
    Chauhan, Karansingh
    Patel, Shail Nimish
    Kumhar, Malaram
    Bhatia, Jitendra
    Tanwar, Sudeep
    Davidson, Innocent Ewean
    Mazibuko, Thokozile F. F.
    Sharma, Ravi
    IEEE ACCESS, 2023, 11 : 21811 - 21830