Selenium Nanoparticles as Potential Drug-Delivery Systems for the Treatment of Parkinson's Disease

被引:15
作者
Kalcec, Nikolina [1 ]
Peranic, Nikolina [1 ]
Mamic, Ivan [2 ]
Beus, Maja [1 ]
Hall, Christopher R. [3 ]
Smith, Trevor A. [3 ]
Sani, Marc Antoine [4 ]
Turcic, Petra [2 ]
Separovic, Frances [4 ]
Vrcek, Ivana Vinkovoic [1 ]
机构
[1] Inst Med Res & Occupat Hlth, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Pharm & Biochem, Zagreb 10000, Croatia
[3] Univ Melbourne, Australian Res Council Ctr Excellence Exciton Sci, Sch Chem, Melbourne, Vic 3010, Australia
[4] Univ Melbourne, Inst Bio21, Sch Chem, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
selenium nanoparticles; drug delivery; drug binding; BBB permeability; PAMPA; membrane permeability; transwell; GOLD NANOPARTICLES; IN-VITRO; TRANSFERRIN; DOPAMINE; BINDING; MOLECULES; BRAIN;
D O I
10.1021/acsanm.3c02749
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of efficient drug formulations for Parkinson's disease (PD) treatment is challenged by achieving pharmacokinetic profiles, reduced side effects, and better permeability through the blood-brain barrier (BBB). As nanoparticles may facilitate the delivery of drugs in the brain due to their high-loading capacity and ability to cross biological barriers, we designed two different types of selenium nanoparticles (SeNPs) that may increase the transport of drugs across the BBB and may act as antioxidants at the site of action. The SeNPs were functionalized with polyvinylpyrrolidone (PVP) and polysorbate 20 (Tween) and characterized in terms of their size, size distribution, shape, surface charge, and colloidal stability in relevant biological media. Their drug-loading capacity was tested using dopamine and L-DOPA as therapeutically active agents for PD. Thermodynamic analysis revealed that binding processes occurred spontaneously through hydrogen bond/van der Waals interactions or electrostatic interactions. The strongest interaction was observed between PVP-SeNPs and L-DOPA or dopamine, which was characterized by a binding constant several orders of magnitude higher than for Tween-SeNPs. However, the addition of human transferrin as a model plasma protein significantly reduced this difference, which indicates the crucial role of protein corona formation in the design of drug nanodelivery systems. In vitro evaluation by cell-free and cellular transwell models showed efficient internalization of SeNP-loaded L-DOPA/dopamine by human endothelial brain cells, while facilitated BBB permeability for L-DOPA, and dopamine was achieved using PVP-SeNPs. Overall, the high potential of SeNPs as drug-delivery vehicles in PD treatment was demonstrated.
引用
收藏
页码:17581 / 17592
页数:12
相关论文
共 50 条
[21]   Drug-Delivery Systems of Green Tea Catechins for Improved Stability and Bioavailability [J].
Rodrigues, C. F. ;
Ascencao, K. ;
Silva, F. A. M. ;
Sarmento, B. ;
Oliveira, M. B. P. P. ;
Andrade, J. C. .
CURRENT MEDICINAL CHEMISTRY, 2013, 20 (37) :4744-4757
[22]   Microfabricated particulate drug-delivery systems [J].
Pan, Jing ;
Chan, Sui Yung ;
Lee, Won Gu ;
Kang, Lifeng .
BIOTECHNOLOGY JOURNAL, 2011, 6 (12) :1477-1487
[23]   Transdermal Delivery of Pramipexole Using Microneedle Technology for the Potential Treatment of Parkinson's Disease [J].
McGuckin, Mary B. ;
Hutton, Aaron R. J. ;
Davis, Ellie R. ;
Sabri, Akmal H. B. ;
Ripolin, Anastasia ;
Himawan, Achmad ;
Naser, Yara A. ;
Ghanma, Rand ;
Greer, Brett ;
Mccarthy, Helen O. ;
Paredes, Alejandro J. ;
Larraneta, Eneko ;
Donnelly, Ryan F. .
MOLECULAR PHARMACEUTICS, 2024, 21 (05) :2512-2533
[24]   Enhancing drug bioavailability for Parkinson's disease: The promise of chitosan delivery mechanisms [J].
Shaikh, Mohammad Arshad Javed ;
Gupta, Gaurav ;
Bagiyal, Pawan ;
Gupta, Saurabh ;
Singh, Santosh Kumar ;
Pillappan, Ramkumar ;
Chellappan, Dinesh Kumar ;
Prasher, Parteek ;
Jakhmola, Vikas ;
Singh, Thakur Gurjeet ;
Dureja, Harish ;
Singh, Sachin Kumar ;
Dua, Kamal .
ANNALES PHARMACEUTIQUES FRANCAISES, 2025, 83 (02)
[25]   CATHETER SYSTEMS FOR INTRATHECAL DRUG-DELIVERY [J].
PENN, RD ;
YORK, MM ;
PAICE, JA .
JOURNAL OF NEUROSURGERY, 1995, 83 (02) :215-217
[26]   Diatomite nanoparticles as potential drug delivery systems [J].
Terracciano, M. ;
De Stefano, L. ;
Santos, H. A. ;
Lamberti, A. ;
Martucci, N. M. ;
Shahbazi, M. A. ;
Correia, A. ;
Ruggiero, I. ;
Rendina, I. ;
Rea, I. .
2015 INTERNATIONAL CONFERENCE ON BIOPHOTONICS (BIOPHOTONICS), 2015, :83-85
[27]   Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status [J].
Gorantla, Srividya ;
Singhvi, Gautam ;
Rapalli, Vamshi Krishna ;
Waghule, Tejashree ;
Dubey, Sunil Kumar ;
Saha, Ranendra Narayan .
THERAPEUTIC DELIVERY, 2020, 11 (04) :269-284
[28]   Heating at the Nanoscale through Drug-Delivery Devices: Fabrication and Synergic Effects in Cancer Treatment with Nanoparticles [J].
Guisasola, Eduardo ;
Baeza, Alejandro ;
Asin, Laura ;
dela Fuente, Jesus M. ;
Vallet-Regi, Maria .
SMALL METHODS, 2018, 2 (09)
[29]   Nanoparticles for topical drug delivery: Potential for skin cancer treatment [J].
Krishnan, Vinu ;
Mitragotri, Samir .
ADVANCED DRUG DELIVERY REVIEWS, 2020, 153 (153) :87-108
[30]   A comprehensive review on recent advancements in drug delivery via selenium nanoparticles [J].
Waqar, Muhammad Ahsan .
JOURNAL OF DRUG TARGETING, 2025, 33 (02) :157-170