Semiconductor Lasers with Improved Lasing Characteristics

被引:0
作者
Danilov, A. I. [1 ]
Ivanov, A. V. [1 ]
Konyaev, V. P. [1 ]
Kurnyavko, Yu. V. [1 ]
Ladugin, M. A. [1 ]
Lobintsov, A. V. [1 ]
Marmalyuk, A. A. [1 ]
Sapozhnikov, S. M. [1 ]
Simakov, V. A. [1 ]
机构
[1] JSC Polyus Res Inst Stelmakh, Moscow 117342, Russia
关键词
semiconductor laser; heterostructure; waveguide; doping; output power; current-voltage characteristic; QUANTUM-WELL HETEROSTRUCTURES; ULTRA-NARROW; POWER; NM; EFFICIENCY; DELOCALIZATION; CARRIERS;
D O I
10.3103/S1068335623160030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the characteristics of semiconductor emitters based on separate-confinement double heterostructures with quantum wells with different configurations of waveguide layers. Lasers with narrow and broad waveguides are considered as applied to the problem of increasing the output power. Semiconductor emitters with undoped and doped waveguide layers are compared. We consider lasers with ultranarrow and broad strongly asymmetric waveguides. It is shown that the reduction of series and thermal resistance reduces the self-heating of lasers and increases the output power and efficiency. The prospects of using the epitaxial integration for designing lasers with several tunnel-coupled emitting sections for increasing the output power and luminosity are considered. The possibility of constructing monolith-integrated thyristor lasers combining the emitting section and an electron switch in a single crystal is demonstrated.
引用
收藏
页码:S405 / S417
页数:13
相关论文
共 50 条
  • [1] Alferov Zh.I., 1971, Fiz. Tekh. Poluprovod, V4, P739
  • [2] High-power laser diodes (λ=808-850 nm) based on asymmetric separate-confinement heterostructures
    Andreev, A. Yu.
    Leshko, A. Yu.
    Lyutetskii, A. V.
    Marmalyuk, A. A.
    Nalyot, T. A.
    Padalitsa, A. A.
    Pikhtin, N. A.
    Sabitov, D. R.
    Simakov, V. A.
    Slipchenko, S. O.
    Khomylev, M. A.
    Tarasov, I. S.
    [J]. SEMICONDUCTORS, 2006, 40 (05) : 611 - 614
  • [3] ANTONOV IV, 1991, PISMA ZH TEKH FIZ+, V17, P89
  • [4] Dember type voltage and nonlinear series resistance of the optical confinement layer of a high-power diode laser
    Avrutin, E. A.
    Ryvkin, B. S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (11)
  • [5] Fundamental transverse mode selection and self-stabilization in large optical cavity diode lasers under high injection current densities
    Avrutin, Eugene A.
    Ryvkin, Boris S.
    Payusov, Alexey S.
    Serin, Artem A.
    Gordeev, Nikita Yu
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (11)
  • [6] Triple integrated laser-thyristor
    Bagaev, T. A.
    Ladugin, M. A.
    Padalitsa, A. A.
    Marmalyuk, A. A.
    Kurnyavko, Yu, V
    Lobintsov, A., V
    Danilov, A., I
    Sapozhnikov, S. M.
    Krichevskii, V. V.
    Konyaev, V. P.
    Simakov, V. A.
    Slipchenko, S. O.
    Podoskin, A. A.
    Pikhtin, N. A.
    [J]. QUANTUM ELECTRONICS, 2020, 50 (11) : 1001 - 1003
  • [7] Double integrated laser-thyristor
    Bagaev, T. A.
    Ladugin, M. A.
    Padalitsa, A. A.
    Marmalyuk, A. A.
    Kurnyavko, Yu, V
    Lobintsov, A., V
    Danilov, A., I
    Sapozhnikov, S. M.
    Krichevskii, V. V.
    Zverkov, M., V
    Konyaev, V. P.
    Simakov, V. A.
    Slipchenko, S. O.
    Podoskin, A. A.
    Pikhtin, N. A.
    [J]. QUANTUM ELECTRONICS, 2019, 49 (11) : 1011 - 1013
  • [8] Experimental studies of 1.5-1.6 μm high-power single-frequency semiconductor lasers
    Bagaeva, O. O.
    Galiev, R. R.
    Danilov, A., I
    Ivanov, A., V
    Kurnosov, V. D.
    Kurnosov, K., V
    Kurnyavko, Yu, V
    Ladugin, M. A.
    Marmalyuk, A. A.
    Romantsevich, V., I
    Simakov, V. A.
    Chernov, R., V
    Shishkov, V. V.
    [J]. QUANTUM ELECTRONICS, 2020, 50 (02) : 143 - 146
  • [9] Basov N.G., 1961, J. Exp. Theor. Phys, V13, P1320
  • [10] Optimisation of waveguide parameters of laser InGaAs/AlGaAs/GaAs heterostructures for obtaining the maximum beam width in the resonator and the maximum output power
    Bogatov, A. P.
    Gushchik, T. I.
    Drakin, A. E.
    Nekrasov, A. P.
    Popovichev, V. V.
    [J]. QUANTUM ELECTRONICS, 2008, 38 (10) : 935 - 939