Streaming Algorithms for Non-Submodular Maximization on the Integer Lattice

被引:0
作者
Tan, Jingjing [1 ]
Sun, Yue [2 ]
Xu, Yicheng [3 ]
Zou, Juan [4 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang 261061, Peoples R China
[2] Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[4] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
TSINGHUA SCIENCE AND TECHNOLOGY | 2023年 / 28卷 / 05期
基金
中国国家自然科学基金;
关键词
integer lattice; non-submodular; streaming algorithm; cardinality constraint; FUNCTION SUBJECT;
D O I
10.26599/TST.2022.9010031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many practical problems emphasize the importance of not only knowing whether an element is selected but also deciding to what extent it is selected, which imposes a challenge on submodule optimization. In this study, we consider the monotone, nondecreasing, and non-submodular maximization on the integer lattice with a cardinality constraint. We first design a two-pass streaming algorithm by refining the estimation interval of the optimal value. For each element, the algorithm not only decides whether to save the element but also gives the number of reservations. Then, we introduce the binary search as a subroutine to reduce the time complexity. Next, we obtain a one-pass streaming algorithm by dynamically updating the estimation interval of optimal value. Finally, we improve the memory complexity of this algorithm.
引用
收藏
页码:888 / 895
页数:8
相关论文
共 38 条
  • [1] Streaming Submodular Maximization: Massive Data Summarization on the Fly
    Badanidiyuru, Ashwinkumar
    Mirzasoleiman, Baharan
    Karbasi, Amin
    Krause, Andreas
    [J]. PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 671 - 680
  • [2] Balkanski E, 2019, Disc Algorithms, P283
  • [3] Bian AA, 2017, PR MACH LEARN RES, V70
  • [4] Bogunovic I, 2018, PR MACH LEARN RES, V84
  • [5] MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT
    Calinescu, Gruia
    Chekuri, Chandra
    Pal, Martin
    Vondrak, Jan
    [J]. SIAM JOURNAL ON COMPUTING, 2011, 40 (06) : 1740 - 1766
  • [6] Chekuri C, 2019, Disc Algorithms, P303
  • [7] Das A, 2008, ACM S THEORY COMPUT, P45
  • [8] Das Abhimanyu, 2011, P 28 INT C INT C MAC, P1057
  • [9] Ene A, 2019, Disc Algorithms, P274
  • [10] A threshold of in n for approximating set cover
    Feige, U
    [J]. JOURNAL OF THE ACM, 1998, 45 (04) : 634 - 652