Remote sensing imagery detects hydromorphic soils hidden under agriculture system

被引:6
作者
Mello, Fellipe A. O. [1 ]
Dematte, Jose A. M. [1 ]
Bellinaso, Henrique [1 ,2 ]
Poppiel, Raul R. [1 ]
Rizzo, Rodnei [1 ]
de Mello, Danilo C. [3 ]
Rosin, Nicolas Augusto [1 ]
Rosas, Jorge T. F. [1 ]
Silvero, Nelida E. Q. [1 ]
Rodriguez-Albarracin, Heidy S. [1 ]
机构
[1] Univ Sao Paulo, Luiz de Queiroz Coll Agr, Dept Soil Sci, Padua Dias Av 11,Postal Box 09, BR-13416900 Piracicaba, SP, Brazil
[2] Coordinat Integrate Tech Assistance Secretariat Ag, Campos Salles St 507, BR-13400200 Piracicaba, SP, Brazil
[3] Univ Fed Vicosa, Dept Soil Sci, Peter Henry Rolfs Av,Univ Campus, BR-36570900 Vicosa, MG, Brazil
关键词
WETLAND SOILS; CROSS-VALIDATION; REFLECTANCE; MODELS; CLASSIFICATION; HYDROPEDOLOGY; CONTAMINATION; MANAGEMENT; IMPACTS; REGION;
D O I
10.1038/s41598-023-36219-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The pressure for food production has expanded agriculture frontiers worldwide, posing a threat to water resources. For instance, placing crop systems over hydromorphic soils (HS), have a direct impact on groundwater and influence the recharge of riverine ecosystems. Environmental regulations improved over the past decades, but it is difficult to detect and protect these soils. To overcome this issue, we applied a temporal remote sensing strategy to generate a synthetic soil image (SYSI) associated with random forest (RF) to map HS in an 735,953.8 km(2) area in Brazil. HS presented different spectral patterns from other soils, allowing the detection by satellite sensors. Slope and SYSI contributed the most for the prediction model using RF with cross validation (accuracy of 0.92). The assessments showed that 14.5% of the study area represented HS, mostly located inside agricultural areas. Soybean and pasture areas had up to 14.9% while sugar cane had just 3%. Here we present an advanced remote sensing technique that may improve the identification of HS under agriculture and assist public policies for their conservation.
引用
收藏
页数:10
相关论文
共 77 条
[1]   Koppen's climate classification map for Brazil [J].
Alvares, Clayton Alcarde ;
Stape, Jose Luiz ;
Sentelhas, Paulo Cesar ;
de Moraes Goncalves, Jose Leonardo ;
Sparovek, Gerd .
METEOROLOGISCHE ZEITSCHRIFT, 2013, 22 (06) :711-728
[2]   Soil hydromorphy and soil carbon: A global data analysis [J].
Amendola, D. ;
Mutema, M. ;
Rosolen, V. ;
Chaplot, V. .
GEODERMA, 2018, 324 :9-17
[3]  
Amundson R., 2022, Soil Secur, V6, P100022, DOI [10.1016/j.soisec.2021.100022, DOI 10.1016/J.SOISEC.2021.100022]
[4]  
Anaya-Acevedo Jesús Adolfo, 2017, Dyna rev.fac.nac.minas, V84, P186, DOI 10.15446/dyna.v84n201.58600
[5]  
[Anonymous], 1992, Breakthroughs in Statistics: Methodology and Distribution
[6]  
Baker R. M., 1994, EXP AGR, V31
[7]   Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation [J].
Bischl, B. ;
Mersmann, O. ;
Trautmann, H. ;
Weihs, C. .
EVOLUTIONARY COMPUTATION, 2012, 20 (02) :249-275
[8]  
Bonato ER., 2022, WORLD SOYB RES C 3 P, P1248, DOI [10.1201/9780429267932-206, DOI 10.1201/9780429267932-206]
[9]   Sustainability of sugarcane production in Brazil. A review [J].
Bordonal, Ricardo de Oliveira ;
Nunes Carvalho, Joao Luis ;
Lal, Rattan ;
de Figueiredo, Eduardo Barretto ;
de Oliveira, Bruna Goncalves ;
La Scala, Newton, Jr. .
AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2018, 38 (02)
[10]   Framing soils as an actor when dealing with wicked environmental problems [J].
Bouma, Johan ;
McBratney, Alex .
GEODERMA, 2013, 200 :130-139