THE VANISHING VISCOSITY LIMIT ON A MODEL OF KAREIVA-ODELL TYPE IN 2D

被引:1
作者
Luo, Yong [1 ]
Jin, Chunhua [1 ]
Yin, Jingxue [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 02期
关键词
Key veords and phrases; Prey-taxis; classical solution; strong solution; vanishing viscosity limit; PREDATOR-PREY MODEL; REACTION-DIFFUSION EQUATIONS; GLOBAL EXISTENCE; SPATIAL HETEROGENEITY; BLOW-UP; CLASSICAL-SOLUTIONS; HAPTOTAXIS MODEL; STEADY-STATES; SYSTEM; AGGREGATION;
D O I
10.3934/dcdsb.2023116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper we invoke the idea of vanishing viscosity limit to bridge the strong solutions of two models in 2D case, i.e., a model of KareivaOdell type in which predators have a remarkable tendency of moving towards diffusible prey, and a model of Stevens-Othmer type where a species has an oriented movement toward a nondiffusing signal. In more detail, we first give in L & INFIN;(& omega;) a uniform-in-& epsilon; upper bound of the unique (for each fixed diffusion coefficient & epsilon; of prey) classical solution of a model of Kareiva-Odell type for any & epsilon; & ISIN; (0, 1). Then we make Lp estimates on the classical solutions to derive a quantitative description in the sense of strong solution. Via the estimates made for the Kareiva-Odell type model, we use Aubin-Lions lemma to show a convergence as & epsilon; & RARR; 0. Finally, we find that the limit of this convergence is a strong solution and also a unique classical solution of a corresponding Stevens-Othmer type model.
引用
收藏
页码:833 / 874
页数:42
相关论文
共 50 条
[1]   ON THE VANISHING VISCOSITY LIMIT OF A CHEMOTAXIS MODEL [J].
Chen, Hua ;
Li, Jian-Meng ;
Wang, Kelei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (03) :1963-1987
[2]   The vanishing viscosity limit for 2D Navier-Stokes in a rough domain [J].
Gerard-Varet, David ;
Lacave, Christophe ;
Nguyen, Toan T. ;
Rousset, Frederic .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 :45-84
[3]   The vanishing viscosity limit for a dyadic model [J].
Cheskidov, Alexey ;
Friedlander, Susan .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (08) :783-787
[4]   Vanishing viscosity limit of the 2D micropolar equations for planar rarefaction wave to a Riemann problem [J].
Gong, Guiqiong ;
Zhang, Lan .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04)
[5]   Vanishing viscosity limit of the 2D micropolar equations for planar rarefaction wave to a Riemann problem [J].
Guiqiong Gong ;
Lan Zhang .
Zeitschrift für angewandte Mathematik und Physik, 2020, 71
[6]   Vanishing viscosity limit of the 3D incompressible Oldroyd-B model [J].
Zi, Ruizhao .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (06) :1841-1867
[7]   Vanishing viscosity limit to the FENE dumbbell model of polymeric flows [J].
Luo, Zhaonan ;
Luo, Wei ;
Yin, Zhaoyang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 304 :467-490
[8]   Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations [J].
Xue, Liutang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (14) :1760-1777
[9]   VANISHING VISCOSITY LIMIT TO RAREFACTION WAVES FOR THE FULL COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE [J].
Wang, Wenjun ;
Yao, Lei .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) :2331-2350
[10]   The vanishing viscosity limit for a 3D model of electro-kinetic fluid in a bounded domain [J].
Jin, Liangbing ;
Fan, Jishan .
APPLIED MATHEMATICS LETTERS, 2013, 26 (01) :154-157