THE VANISHING VISCOSITY LIMIT ON A MODEL OF KAREIVA-ODELL TYPE IN 2D

被引:0
|
作者
Luo, Yong [1 ]
Jin, Chunhua [1 ]
Yin, Jingxue [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 02期
关键词
Key veords and phrases; Prey-taxis; classical solution; strong solution; vanishing viscosity limit; PREDATOR-PREY MODEL; REACTION-DIFFUSION EQUATIONS; GLOBAL EXISTENCE; SPATIAL HETEROGENEITY; BLOW-UP; CLASSICAL-SOLUTIONS; HAPTOTAXIS MODEL; STEADY-STATES; SYSTEM; AGGREGATION;
D O I
10.3934/dcdsb.2023116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper we invoke the idea of vanishing viscosity limit to bridge the strong solutions of two models in 2D case, i.e., a model of KareivaOdell type in which predators have a remarkable tendency of moving towards diffusible prey, and a model of Stevens-Othmer type where a species has an oriented movement toward a nondiffusing signal. In more detail, we first give in L & INFIN;(& omega;) a uniform-in-& epsilon; upper bound of the unique (for each fixed diffusion coefficient & epsilon; of prey) classical solution of a model of Kareiva-Odell type for any & epsilon; & ISIN; (0, 1). Then we make Lp estimates on the classical solutions to derive a quantitative description in the sense of strong solution. Via the estimates made for the Kareiva-Odell type model, we use Aubin-Lions lemma to show a convergence as & epsilon; & RARR; 0. Finally, we find that the limit of this convergence is a strong solution and also a unique classical solution of a corresponding Stevens-Othmer type model.
引用
收藏
页码:833 / 874
页数:42
相关论文
共 50 条
  • [1] ON THE VANISHING VISCOSITY LIMIT OF A CHEMOTAXIS MODEL
    Chen, Hua
    Li, Jian-Meng
    Wang, Kelei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (03) : 1963 - 1987
  • [2] The vanishing viscosity limit for 2D Navier-Stokes in a rough domain
    Gerard-Varet, David
    Lacave, Christophe
    Nguyen, Toan T.
    Rousset, Frederic
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 45 - 84
  • [3] The vanishing viscosity limit for a dyadic model
    Cheskidov, Alexey
    Friedlander, Susan
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (08) : 783 - 787
  • [4] Vanishing viscosity limit of the 2D micropolar equations for planar rarefaction wave to a Riemann problem
    Gong, Guiqiong
    Zhang, Lan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [5] Vanishing viscosity limit of the 2D micropolar equations for planar rarefaction wave to a Riemann problem
    Guiqiong Gong
    Lan Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [6] Vanishing viscosity limit of the 3D incompressible Oldroyd-B model
    Zi, Ruizhao
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (06): : 1841 - 1867
  • [7] Vanishing viscosity limit to the FENE dumbbell model of polymeric flows
    Luo, Zhaonan
    Luo, Wei
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 304 : 467 - 490
  • [8] Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations
    Xue, Liutang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (14) : 1760 - 1777
  • [9] VANISHING VISCOSITY LIMIT TO RAREFACTION WAVES FOR THE FULL COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE
    Wang, Wenjun
    Yao, Lei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2331 - 2350
  • [10] The vanishing viscosity limit for a 3D model of electro-kinetic fluid in a bounded domain
    Jin, Liangbing
    Fan, Jishan
    APPLIED MATHEMATICS LETTERS, 2013, 26 (01) : 154 - 157