Deep Learning-Based Improved Automatic Building Extraction from Open-Source High Resolution Unmanned Aerial Vehicle (UAV) Imagery

被引:0
|
作者
Maniyar, Chintan B. [1 ]
Kumar, Minakshi [1 ]
机构
[1] Indian Inst Remote Sensing, Photogrammetry & Remote Sensing Dept, Dehra Dun 248001, Uttarakhand, India
关键词
Transfer learning; Fully convolutional networks; Image segmentation; Building extraction; CLASSIFICATION; AREAS;
D O I
10.1007/978-3-031-19309-5_5
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Automatically extracting buildings from remotely sensed imagery has always been a challenging task, given the spectral homogeneity of buildings with non-building features as well as the complex structural diversity within the image. Traditional machine learning (ML) based methods deeply rely on a huge number of samples and are best suited for medium-resolution images. Unmanned aerial vehicle (UAV) imagery offers the distinct advantage of very high spatial resolution, which is helpful in improving building extraction by characterizing patterns and structures. However, with increased finer details, the number of images also increases many folds in a UAV dataset, which require robust processing algorithms. Deep learning algorithms, specifically Fully Convolutional Networks (FCNs) have greatly improved the results of building extraction from such high resolution remotely sensed imagery, as compared to traditional methods. This study proposes a deep learning-based segmentation approach to extract buildings by transferring the learning of a deep Residual Network (ResNet) to the segmentation-based FCN U-Net. This combined dense architecture of ResNet and U-Net (Res-U-Net) is trained and tested for building extraction on the open source Inria Aerial Image Labelling (IAIL) dataset. This dataset contains 360 orthorectified images with a tile size of 1500 m(2) each, at 30 cm spatial resolution with red, green and blue bands; while covering total area of 805 km(2) in select US and Austrian cities. Quantitative assessments show that the proposed methodology outperforms the current deep learning-based building extraction methods. When compared with a singular U-Net model for building extraction for the IAIL dataset, the proposed Res-U-Net model improves the overall accuracy from 92.85% to 96.5%, the mean F1-score from 0.83 to 0.88 and the mean IoU metric from 0.71 to 0.80. Results show that such a combination of two deep learning architectures greatly improves the building extraction accuracy as compared to a singular architecture.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 50 条
  • [1] Automatic Segmentation of Mauritia flexuosa in Unmanned Aerial Vehicle (UAV) Imagery Using Deep Learning
    Morales, Giorgio
    Kemper, Guillermo
    Sevillano, Grace
    Arteaga, Daniel
    Ortega, Ivan
    Telles, Joel
    FORESTS, 2018, 9 (12):
  • [2] A Deep Learning-Based Framework for Automated Extraction of Building Footprint Polygons from Very High-Resolution Aerial Imagery
    Li, Ziming
    Xin, Qinchuan
    Sun, Ying
    Cao, Mengying
    REMOTE SENSING, 2021, 13 (18)
  • [3] AUTOMATIC EXTRACTION OF BUILDING OUTLINE FROM HIGH RESOLUTION AERIAL IMAGERY
    Wang, Yandong
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 41 (B3): : 419 - 423
  • [4] Mapping Very-High-Resolution Evapotranspiration from Unmanned Aerial Vehicle (UAV) Imagery
    Park, Suyoung
    Ryu, Dongryeol
    Fuentes, Sigfredo
    Chung, Hoam
    O'Connell, Mark
    Kim, Junchul
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (04)
  • [5] Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial Vehicle (UAV) Imagery
    Doughty, Cheryl L.
    Cavanaugh, Kyle C.
    REMOTE SENSING, 2019, 11 (05)
  • [6] A hybrid deep learning-based model for automatic car extraction from high-resolution airborne imagery
    Masouleh, Mehdi Khoshboresh
    Shah-Hosseini, Reza
    APPLIED GEOMATICS, 2020, 12 (02) : 107 - 119
  • [7] DEEP LEARNING-BASED CLOUD DETECTION IN HIGH-RESOLUTION SATELLITE IMAGERY USING VARIOUS OPEN-SOURCE CLOUD IMAGES
    Yun, Yerin
    Kim, Taeheon
    Lee, Changhui
    Han, Youkyung
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6538 - 6541
  • [8] Deep learning-based object detection in maritime unmanned aerial vehicle imagery: Review and experimental comparisons
    Zhao, Chenjie
    Liu, Ryan Wen
    Qu, Jingxiang
    Gao, Ruobin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [9] Deep learning-based object detection in maritime unmanned aerial vehicle imagery: Review and experimental comparisons
    Zhao, Chenjie
    Liu, Ryan Wen
    Qu, Jingxiang
    Gao, Ruobin
    Engineering Applications of Artificial Intelligence, 2024, 128
  • [10] FwSVM-Net: A novel deep learning-based automatic building extraction from aerial images
    Yildirim, Feride Secil
    Karsli, Fevzi
    Bahadir, Murat
    Yildirim, Merve
    JOURNAL OF BUILDING ENGINEERING, 2024, 96