CRISPR-Editing Therapy for Duchenne Muscular Dystrophy

被引:17
作者
Chemello, Francesco [1 ]
Olson, Eric N. [2 ,3 ]
Bassel-Duby, Rhonda [2 ,3 ,4 ]
机构
[1] Univ Padua, Dept Biol, Padua, Italy
[2] Univ Texas Southwestern Med Ctr, Dept Mol Biol, Dallas, TX USA
[3] Univ Texas Southwestern Med Ctr, Hamon Ctr Regenerat Sci & Med, Dallas, TX USA
[4] Univ Texas Southwestern Med Ctr, Dept Mol Biol, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
Duchenne muscular dystrophy; CRISPR-Cas9; gene editing; AAV vectors; IN-VIVO; MOUSE MODEL; GENOMIC DNA; MUSCLE; EXPRESSION; STEM; MICE; SEQ; RNA; MUTATIONS;
D O I
10.1089/hum.2023.053
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Duchenne muscular dystrophy (DMD) is a debilitating genetic disorder that results in progressive muscle degeneration and premature death. DMD is caused by mutations in the gene encoding dystrophin protein, a membrane-associated protein required for maintenance of muscle structure and function. Although the genetic mutations causing the disease are well known, no curative therapies have been developed to date. The advent of genome-editing technologies provides new opportunities to correct the underlying mutations responsible for DMD. These mutations have been successfully corrected in human cells, mice, and large animal models through different strategies based on CRISPR-Cas9 gene editing. Ideally, CRISPR-editing could offer a one-time treatment for DMD by correcting the genetic mutations and enabling normal expression of the repaired gene. However, numerous challenges remain to be addressed, including optimization of gene editing, delivery of gene-editing components to all the muscles of the body, and the suppression of possible immune responses to the CRISPR-editing therapy. This review provides an overview of the recent advances toward CRISPR-editing therapy for DMD and discusses the opportunities and the remaining challenges in the path to clinical translation.
引用
收藏
页码:379 / 387
页数:9
相关论文
共 118 条
  • [21] Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice
    Deconinck, N
    Tinsley, J
    DeBacker, F
    Fisher, R
    Kahn, D
    Phelps, S
    Davies, K
    Gillis, JM
    [J]. NATURE MEDICINE, 1997, 3 (11) : 1216 - 1221
  • [22] Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
    Doench, John G.
    Fusi, Nicolo
    Sullender, Meagan
    Hegde, Mudra
    Vaimberg, Emma W.
    Donovan, Katherine F.
    Smith, Ian
    Tothova, Zuzana
    Wilen, Craig
    Orchard, Robert
    Virgin, Herbert W.
    Listgarten, Jennifer
    Root, David E.
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (02) : 184 - +
  • [23] Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy
    Duan, Dongsheng
    [J]. MOLECULAR THERAPY, 2018, 26 (10) : 2337 - 2356
  • [24] CRISPR-Induced Deletion with SaCas9 Restores Dystrophin Expression in Dystrophic Models In Vitro and In Vivo
    Duchene, Benjamin L.
    Cherif, Khadija
    Iyombe-Engembe, Jean-Paul
    Guyon, Antoine
    Rousseau, Joel
    Ouellet, Dominique L.
    Barbeau, Xavier
    Lague, Patrick
    Tremblay, Jacques P.
    [J]. MOLECULAR THERAPY, 2018, 26 (11) : 2604 - 2616
  • [25] Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders
    El Andari, Jihad
    Renaud-Gabardos, Edith
    Tulalamba, Warut
    Weinmann, Jonas
    Mangin, Louise
    Pham, Quang Hong
    Hille, Susanne
    Bennett, Antonette
    Attebi, Esther
    Bourges, Emanuele
    Leborgne, Christian
    Guerchet, Nicolas
    Fakhiri, Julia
    Kraemer, Chiara
    Wiedtke, Ellen
    McKenna, Robert
    Guianvarc'h, Laurence
    Toueille, Magali
    Ronzitti, Giuseppe
    Hebben, Matthias
    Mingozzi, Federico
    VandenDriessche, Thierry
    Agbandje-McKenna, Mavis
    Mueller, Oliver J.
    Chuah, Marinee K.
    Buj-Bello, Ana
    Grimm, Dirk
    [J]. SCIENCE ADVANCES, 2022, 8 (38)
  • [26] In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice
    El Refaey, Mona
    Xu, Li
    Gao, Yandi
    Canan, Benjamin D.
    Adesanya, T. M. Ayodele
    Warner, Sarah C.
    Akagi, Keiko
    Symer, David E.
    Mohler, Peter J.
    Ma, Jianjie
    Janssen, Paul M. L.
    Han, Renzhi
    [J]. CIRCULATION RESEARCH, 2017, 121 (08) : 923 - +
  • [27] Dystrophin Isoform Induction In Vivo by Antisense-mediated Alternative Splicing
    Fletcher, Sue
    Adams, Abbie M.
    Johnsen, Russell D.
    Greer, Kane
    Moulton, Hong M.
    Wilton, Steve D.
    [J]. MOLECULAR THERAPY, 2010, 18 (06) : 1218 - 1223
  • [28] Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
    Fu, Yanfang
    Sander, Jeffry D.
    Reyon, Deepak
    Cascio, Vincent M.
    Joung, J. Keith
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (03) : 279 - 284
  • [29] Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage
    Gaudelli, Nicole M.
    Komor, Alexis C.
    Rees, Holly A.
    Packer, Michael S.
    Badran, Ahmed H.
    Bryson, David I.
    Liu, David R.
    [J]. NATURE, 2017, 551 (7681) : 464 - +
  • [30] Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping
    Gee, Peter
    Lung, Mandy S. Y.
    Okuzaki, Yuya
    Sasakawa, Noriko
    Iguchi, Takahiro
    Makita, Yukimasa
    Hozumi, Hiroyuki
    Miura, Yasutomo
    Yang, Lucy F.
    Iwasaki, Mio
    Wang, Xiou H.
    Waller, Matthew A.
    Shirai, Nanako
    Abe, Yasuko O.
    Fujita, Yoko
    Watanabe, Kei
    Kagita, Akihiro
    Iwabuchi, Kumiko A.
    Yasuda, Masahiko
    Xu, Huaigeng
    Noda, Takeshi
    Komano, Jun
    Sakurai, Hidetoshi
    Inukai, Naoto
    Hotta, Akitsu
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)