Holistic Strategies Lead to Enhanced Efficiency and Stability of Hybrid Chemical Vapor Deposition Based Perovskite Solar Cells and Modules

被引:49
作者
Tong, Guoqing [1 ,2 ]
Zhang, Jiahao [1 ]
Bu, Tongle [1 ,3 ]
Ono, Luis K. [1 ]
Zhang, Congyang [1 ]
Liu, Yuqiang [1 ,4 ]
Ding, Chenfeng [1 ]
Wu, Tianhao [1 ]
Mariotti, Silvia [1 ]
Kazaoui, Said [5 ]
Qi, Yabing [1 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ OIST, EMSSU, 1919-1 Tancha, Onna Son, Okinawa 9040495, Japan
[2] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[4] Qingdao Univ, Coll Text & Clothing, State Key Lab Biofibers & Ecotext, Qingdao 266071, Peoples R China
[5] Natl Inst Adv Ind Sci & Technol, Dept Energy & Environm, Tsukuba, Ibaraki 3058568, Japan
关键词
chemical vapor deposition; grain growth; nucleation; perovskite solar modules; SnO2; FILMS; SNO2; PASSIVATION; FABRICATION;
D O I
10.1002/aenm.202300153
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hybrid chemical vapor deposition (HCVD) is a promising method for the up-scalable fabrication of perovskite solar cells/modules (PSCs/PSMs). However, the efficiency of the HCVD-based perovskite solar cells still lags behind the solution-processed PSCs/PSMs. In this work, the oxygen loss of the electron transport layer of SnO2 in the HCVD process and its negative impact on solar cell device performance are revealed. As the counter-measure, potassium sulfamate (H2KNO3S) is introduced as the passivation layer to both mitigate the oxygen loss issue of SnO2 and passivate the uncoordinated Pb2+ in the perovskite film. In parallel, N-methylpyrrolidone (NMP) is used as the solvent to dissolve PbI2 by forming the intermediate phase of PbI2 center dot NMP, which can greatly lower the energy barrier for perovskite nucleation in the HCVD process. The perovskite seed is employed to further modulate the kinetics of perovskite crystal growth and improve the grain size. The resultant solar cells yield a champion power conversion efficiency (PCE) of 21.98% (0.09 cm(2)) with a stable output performance of 21.15%, and the PCEs of the mini-modules are 16.16% (22.4 cm(2), stable output performance of 14.72%) and 12.12% (91.8 cm(2)). Furthermore, the unencapsulated small area device shows an outstanding operational stability with a T80 lifetime exceeding 4000 h.
引用
收藏
页数:10
相关论文
共 52 条
[1]   From Groundwork to Efficient Solar Cells: On the Importance of the Substrate Material in Co-Evaporated Perovskite Solar Cells [J].
Abzieher, Tobias ;
Feeney, Thomas ;
Schackmar, Fabian ;
Donie, Yidenekachew J. ;
Hossain, Ihteaz M. ;
Schwenzer, Jonas A. ;
Hellmann, Tim ;
Mayer, Thomas ;
Powalla, Michael ;
Paetzold, Ulrich W. .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (42)
[2]  
[Anonymous], 2022, About Us
[3]   Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules [J].
Bu, Tongle ;
Ono, Luis K. ;
Li, Jing ;
Su, Jie ;
Tong, Guoqing ;
Zhang, Wei ;
Liu, Yuqiang ;
Zhang, Jiahao ;
Chang, Jingjing ;
Kazaoui, Said ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Qi, Yabing .
NATURE ENERGY, 2022, 7 (06) :528-536
[4]   Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules [J].
Bu, Tongle ;
Li, Jing ;
Li, Hengyi ;
Tian, Congcong ;
Su, Jie ;
Tong, Guoqing ;
Ono, Luis K. ;
Wang, Chao ;
Lin, Zhipeng ;
Chai, Nianyao ;
Zhang, Xiao-Li ;
Chang, Jingjing ;
Lu, Jianfeng ;
Zhong, Jie ;
Huang, Wenchao ;
Qi, Yabing ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
SCIENCE, 2021, 372 (6548) :1327-+
[5]   Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J].
Bu, Tongle ;
Li, Jing ;
Zheng, Fei ;
Chen, Weijian ;
Wen, Xiaoming ;
Ku, Zhiliang ;
Peng, Yong ;
Zhong, Jie ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
NATURE COMMUNICATIONS, 2018, 9
[6]   Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability [J].
Chen, Taotao ;
Tong, Guoqing ;
Xu, Enze ;
Li, Huan ;
Li, Pengcheng ;
Zhu, Zhifeng ;
Tang, Jianxin ;
Qi, Yabing ;
Jiang, Yang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) :20597-20603
[7]   High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells [J].
Feng, Jiangshan ;
Jiao, Yuxiao ;
Wang, Hui ;
Zhu, Xuejie ;
Sun, Youming ;
Du, Minyong ;
Cao, Yuexian ;
Yang, Dong ;
Liu, Shengzhong .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (05) :3035-3043
[8]   Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition [J].
Gil-Escrig, Lidon ;
Dreessen, Chris ;
Palazon, Francisco ;
Hawash, Zafer ;
Moons, Ellen ;
Albrecht, Steve ;
Sessolo, Michele ;
Bolink, Henk J. .
ACS ENERGY LETTERS, 2021, 6 (02) :827-836
[9]   Omnidirectional diffusion of organic amine salts assisted by ordered arrays in porous lead iodide for two-step deposited large-area perovskite solar cells [J].
He, Jiacheng ;
Sheng, Wangping ;
Yang, Jia ;
Zhong, Yang ;
Su, Yang ;
Tan, Licheng ;
Chen, Yiwang .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (02) :629-640
[10]   From scalable solution fabrication of perovskite films towards commercialization of solar cells [J].
Huang, Fei ;
Li, Mengjie ;
Siffalovic, Peter ;
Cao, Guozhong ;
Tian, Jianjun .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :518-549