Facile synthesis of crack-free single-crystalline Al-doped Co-free Ni-rich cathode material for lithium-ion batteries

被引:11
|
作者
Liu, Qi [1 ]
Wu, Zhenqian [1 ]
Sun, Jingying [2 ]
Xu, Ruimei [2 ]
Li, Xianwei [1 ]
Yu, Xiao [1 ]
Liu, Yong [1 ]
机构
[1] Sun Yat sen Univ, Sch Mat Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[2] Sun Yat sen Univ, Instrumental Anal & Res Ctr, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Co-free cathode material; Al dopant; Single-crystal; Chelation; SYNTHESIS STRATEGY; CYCLE STABILITY; COBALT; PERFORMANCE; CHEMISTRY;
D O I
10.1016/j.electacta.2022.141473
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Co-free, Ni-rich cathode materials have aroused enormous attentions for the low cost, sustainable development of lithium-ion batteries. However, it is not easy to fabricate single-crystalline Ni-rich cathode materials from the hierarchical structured precursors via coprecipitation method. Furthermore, it is difficult to introduce Al dopant during the coprecipitation process to obtain high quality Ni-rich cathode material owing to the rapid sediment of Al3+. Herein, we developed a one-step stirring-assisted cation chelation and reassembly route for fabricating crack-free single-crystalline, Al-doped Co-free Ni-rich cathode material. The fabricated LiNi0.8Mn0.16Al0.04O2 shows a high capacity of 204 mAh g-1 at 0.1C, excellent rate capability (143 mAh g-1 at 10C), and good cycling stability (an initial specific capacity of 178 mAh g-1 with capacity retention of 82.2% at 1C over 200 cycles). Furthermore, when tested at a raised temperature of 55 degrees C, it exhibited an initial capacity of 194.7 mAh g-1 with capacity retention of 82.1% at 1C over 100 cycles. The outstanding electrochemical performance can be ascribed to the synergistic effect of single crystalline structure and successful doping of Al element in the cathode, which enable fast ion and electron transport, suppress Li/Ni mixing and maintain the structural stability.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Key Parameter Optimization for the Continuous Synthesis of Ni-Rich Ni-Co-Al Cathode Materials for Lithium-Ion Batteries
    Xu, Chunliu
    Yang, Wen
    Xiang, Wei
    Wu, Zhenguo
    Song, Yang
    Wang, Gongke
    Liu, Yuxia
    Yan, Hua
    Zhang, Bin
    Zhong, Benhe
    Guo, Xiaodong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (52) : 22549 - 22558
  • [12] Pushing the Energy-Lifetime Frontier of Li-Ion Batteries: Study of Ni-Rich, Co-Free NMAW Cathode Material
    Hamam, Ines
    Omessi, Roee
    Abraham, Jeffin James
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (11)
  • [13] All-dry solid-phase synthesis of single-crystalline Ni-rich ternary cathodes for lithium-ion batteries
    Qin, Li
    Yu, Haifeng
    Jiang, Xin
    Chen, Ling
    Cheng, Qilin
    Jiang, Hao
    SCIENCE CHINA-MATERIALS, 2024, 67 (02) : 650 - 657
  • [14] Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries
    Yang, Yue
    Lei, Shuya
    Song, Shaole
    Sun, Wei
    Wang, Linsong
    WASTE MANAGEMENT, 2020, 102 : 131 - 138
  • [15] One-Step Solid-State Synthesis of Ni-Rich Cathode Materials for Lithium-Ion Batteries
    Wang, Lifan
    Shi, Qinling
    Zhan, Chun
    Liu, Guicheng
    MATERIALS, 2023, 16 (08)
  • [16] Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi0.9Mn0.05Co0.05O2 cathode material by ultrathin Li-rich oxide layer for lithium-ion batteries
    Kim, Kyoung-Eun
    Jeong, Jiwon
    Lee, Yongheum
    Lim, Hyojun
    Chung, Kyung Yoon
    Kim, Hansu
    Kim, Sang-Ok
    JOURNAL OF POWER SOURCES, 2024, 601
  • [17] Synthesis of Ni-Rich Cathode Material from Maleic Acid-Leachate of Spent Lithium-Ion Batteries
    Liu, Borui
    Huang, Qing
    Su, Yuefeng
    Sun, Liuye
    Wu, Tong
    Wang, Guange
    Zhang, Qiyu
    Wu, Feng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (21): : 7839 - 7850
  • [18] Single-Crystal Ni-Rich Layered LiNi0.9Mn0.1O2 Enables Superior Performance of Co-Free Cathodes for Lithium-Ion Batteries
    Dai, Pengpeng
    Kong, Xiangbang
    Yang, Huiya
    Li, Jiyang
    Zeng, Jing
    Zhao, Jinbao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (14) : 4381 - 4390
  • [19] The Y3+and W6+co-doping into Ni-rich Co-free single-crystal cathode LiNi0.9Mn0.1O2 for achieving high electrochemical properties in lithium-ion batteries
    Feng, Hailan
    Xu, Yuxing
    Zhou, Yuncheng
    Song, Jiechen
    Yang, Jun
    Tan, Qiangqiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [20] Surface Reduction Stabilizes the Single-Crystalline Ni-Rich Layered Cathode for Li-Ion Batteries
    Fan, Qinglu
    Zuba, Mateusz Jan
    Zong, Yanxu
    Menon, Ashok S.
    Pacileo, Anthony T.
    Piper, Louis F. J.
    Zhou, Guangwen
    Liu, Hao
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (34) : 38795 - 38806