Improving Multi-Site Autism Classification via Site-Dependence Minimization and Second-Order Functional Connectivity

被引:36
作者
Kunda, Mwiza [1 ,2 ]
Zhou, Shuo [1 ]
Gong, Gaolang [3 ,4 ]
Lu, Haiping [1 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, England
[2] Graphcore, London WC1H 9LT, England
[3] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
[4] Beijing Normal Univ, IDG McGovern Inst Brain Res, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Data heterogeneity; domain adaptation; fMRI; autism spectrum disorders; functional connectivity; SPECTRUM DISORDER; CORTICAL THICKNESS; CHILDREN; FEATURES; NETWORK;
D O I
10.1109/TMI.2022.3203899
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine learning has been widely used to develop classification models for autism spectrum disorder (ASD) using neuroimaging data. Recently, studies have shifted towards using large multi-site neuroimaging datasets to boost the clinical applicability and statistical power of results. However, the classification performance is hindered by the heterogeneous nature of agglomerative datasets. In this paper, we propose new methods for multi-site autism classification using the Autism Brain Imaging Data Exchange (ABIDE) dataset. We firstly propose a new second-order measure of functional connectivity (FC) named as Tangent Pearson embedding to extract better features for classification. Then we assess the statistical dependence between acquisition sites and FC features, and take a domain adaptation approach to minimize the site dependence of FC features to improve classification. Our analysis shows that 1) statistical dependence between site and FC features is statistically significant at the 5% level, and 2) extracting second-order features from neuroimaging data and minimizing their site dependence can improve over state-of-the-art (SOTA) classification results, achieving a classification accuracy of 73%.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 37 条
[1]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[2]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[3]   ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data [J].
Almuqhim, Fahad ;
Saeed, Fahad .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
[4]   Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls [J].
Arbabshirani, Mohammad R. ;
Plis, Sergey ;
Sui, Jing ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 145 :137-165
[5]   Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014 [J].
Baio, Jon ;
Wiggins, Lisa ;
Christensen, Deborah L. ;
Maenner, Matthew J. ;
Daniels, Julie ;
Warren, Zachary ;
Kurzius-Spencer, Margaret ;
Zahorodny, Walter ;
Rosenberg, Cordelia Robinson ;
White, Tiffany ;
Durkin, Maureen S. ;
Imm, Pamela ;
Nikolaou, Loizos ;
Yeargin-Allsopp, Marshalyn ;
Lee, Li-Ching ;
Harrington, Rebecca ;
Lopez, Maya ;
Fitzgerald, Robert T. ;
Hewitt, Amy ;
Pettygrove, Sydney ;
Constantino, John N. ;
Vehorn, Alison ;
Shenouda, Josephine ;
Hall-Lande, Jennifer ;
Braun, Kim Van Naarden ;
Dowling, Nicole F. .
MMWR SURVEILLANCE SUMMARIES, 2018, 67 (06) :1-23
[6]  
Castrillon JG, 2014, CONF REC ASILOMAR C, P608, DOI 10.1109/ACSSC.2014.7094518
[7]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[8]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[9]   Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging [J].
Du, Yuhui ;
Fu, Zening ;
Calhoun, Vince D. .
FRONTIERS IN NEUROSCIENCE, 2018, 12
[10]  
Dvornek NC, 2018, I S BIOMED IMAGING, P725, DOI 10.1109/ISBI.2018.8363676