Images of graded polynomials on matrix algebras

被引:3
作者
Centrone, Lucio [1 ,2 ]
de Mello, Thiago Castilho [3 ]
机构
[1] Univ Bari, Dipartimento Matemat, Via Orabona 4, I-70125 Bari, Italy
[2] Univ Estadual Campinas, IMECC, Rua Sergio Buarque Holanda 651,Cidade Univ Zeferi, BR-13083859 Campinas, SP, Brazil
[3] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Ave Cesare M Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Images of polynomials on algebras; Graded polynomial identities; Graded structures; MULTILINEAR POLYNOMIALS; IDENTITIES;
D O I
10.1016/j.jalgebra.2022.09.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to start the study of images of graded polynomials on full matrix algebras. We work with the matrix algebra Mn(K) over a field K endowed with its canonical Zn- grading (Vasilovsky's grading). We explicitly determine the possibilities for the linear span of the image of a multilinear graded polynomial over the field Q of rational numbers and state an analogue of the L'vov-Kaplansky conjecture about images of multilinear graded polynomials on n x n matrices, where n is a prime number. We confirm such conjecture for polynomials of degree 2 over Mn(K) when K is a quadratically closed field of characteristic zero or greater than n and for polynomials of arbitrary degree over matrices of order 2. We also determine all the possible images of semi-homogeneous graded polynomials evaluated on M2(K). (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:650 / 669
页数:20
相关论文
共 50 条
  • [1] Images of multilinear graded polynomials on upper triangular matrix algebras
    Fagundes, Pedro
    Koshlukov, Plamen
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 1540 - 1565
  • [2] The images of polynomials on 3 x 3 upper triangular matrix algebras
    Chen, Qian
    Luo, Yingyu
    Wang, Yu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 648 : 254 - 269
  • [3] The Images of Completely Homogeneous Polynomials on 2 x 2 Upper Triangular Matrix Algebras
    Zhou, Jia
    Wang, Yu
    ALGEBRAS AND REPRESENTATION THEORY, 2021, 24 (05) : 1221 - 1229
  • [4] Identities and central polynomials for real graded division algebras
    Diniz, Diogo
    Fidelis, Claudemir
    Mota, Sergio
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2017, 27 (07) : 935 - 952
  • [5] GRADED CENTRAL POLYNOMIALS FOR T-PRIME ALGEBRAS
    Alves, Sergio M.
    Brandao, Antonio P., Jr.
    Koshlukov, Plamen
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2008 - 2020
  • [6] Central polynomials of graded algebras: Capturing their exponential growth
    La Mattina, Daniela
    Martino, Fabrizio
    Rizzo, Carla
    JOURNAL OF ALGEBRA, 2022, 600 : 45 - 70
  • [7] Polynomial identities and images of polynomials on null-filiform Leibniz algebras
    de Mello, Thiago Castilho
    Souza, Manuela da Silva
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 679 : 246 - 260
  • [8] Graded central polynomials for the matrix algebra of order two
    Brandao, Antonio Pereira, Jr.
    Koshlukov, Plamen
    Krasilnikov, Alexei
    MONATSHEFTE FUR MATHEMATIK, 2009, 157 (03): : 247 - 256
  • [9] A note on the image of polynomials on upper triangular matrix algebras
    Chen, Qian
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (07) : 3154 - 3167
  • [10] On the factorization of T-G-ideals of graded matrix algebras
    Centrone, Lucio
    de Mello, Thiago Castilho
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2018, 59 (03): : 597 - 615