Experimental evaluation and uncertainty quantification for a fractional viscoelastic model of salt concrete

被引:2
作者
Hinze, Matthias [1 ,2 ]
Xiao, Sinan [3 ]
Schmidt, Andre [2 ]
Nowak, Wolfgang [3 ]
机构
[1] Gesell Anlagen & Reaktorsicherheit GRS gGmbH, Theodor Heuss Str 4, D-38122 Braunschweig, Germany
[2] Univ Stuttgart, Inst Nonlinear Mech, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Modeling Hydraul & Environm Syst, Pfaffenwaldring 5a, D-70569 Stuttgart, Germany
关键词
Creep test; Linear viscoelasticity; Fractional Zener model; Bayesian inversion; EQUATIONS; CALCULUS;
D O I
10.1007/s11043-021-09534-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study evaluates and analyzes creep testing results on salt concrete of type M2. The concrete is a candidate material for long-lasting structures for sealing underground radioactive waste repository sites. Predicting operational lifetime and security aspects for these structures requires specific constitutive equations to describe the material behavior. Thus, we analyze whether a fractional viscoelastic constitutive law is capable of representing the long-term creep and relaxation processes for M2 concrete. We conduct a creep test to identify the parameters of the fractional model. Moreover, we use the Bayesian inversion method to evaluate the identifiability of the model parameters and the suitability of the experimental setup to yield a reliable prediction of the concrete behavior. Particularly, this Bayesian analysis allows to incorporate expert knowledge as prior information, to account for limited experimental precision and finally to rigorously quantify the post-calibration uncertainty.
引用
收藏
页码:139 / 162
页数:24
相关论文
共 34 条
[1]   FRACTIONAL CALCULUS IN THE TRANSIENT ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
TORVIK, PJ .
AIAA JOURNAL, 1985, 23 (06) :918-925
[2]  
BAZANT ZP, 1995, MATER STRUCT, V28, P357
[3]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[4]  
BLAIR GWS, 1947, J COLL SCI IMP U TOK, V2, P21
[5]   AUTOMATIC 1-D WAVEFORM INVERSION OF MARINE SEISMIC REFRACTION DATA [J].
CARY, PW ;
CHAPMAN, CH .
GEOPHYSICAL JOURNAL-OXFORD, 1988, 93 (03) :527-546
[6]  
Christensen R M., 2013, Theory of Viscoelasticity
[7]  
Congdon P, 2003, APPL BAYESIAN MODELL, V595, DOI [10.1002/0470867159, DOI 10.1002/0470867159]
[8]  
Creus G.J., 1986, VISCOELASTICITY BASI, DOI [10.1007/978-3-642-82686-3, DOI 10.1007/978-3-642-82686-3]
[9]  
DBE, 2004, 192 DTSCH GES BAU BE
[10]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+