Smart predictive viscosity mixing of CO2-N2 using optimized dendritic neural networks to implicate for carbon capture utilization and storage

被引:14
作者
Ewees, Ahmed A. [1 ]
Thanh, Hung Vo [2 ,3 ,11 ]
Al-qaness, Mohammed A. A. [4 ,5 ]
Abd Elaziz, Mohamed [6 ,8 ,9 ,10 ]
Samak, Ahmed H. [7 ]
机构
[1] Univ Bisha, Coll Comp & Informat Syst, Dept Informat Sci & Cybersecur, POB 551, Bisha, Saudi Arabia
[2] Van Lang Univ, Inst Computat Sci & Artificial Intelligence, Lab Computat Mech, Ho Chi Minh City, Vietnam
[3] Van Lang Univ, Fac Mech Elect & Comp Engn, Sch Technol, Ho Chi Minh City, Vietnam
[4] Zhejiang Normal Univ, Coll Phys & Elect Informat Engn, Jinhua 321004, Peoples R China
[5] Zhejiang Optoelect Res Inst, Jinhua 321004, Peoples R China
[6] Zagazig Univ, Fac Sci, Dept Math, Zagazig 44519, Egypt
[7] Menoufia Univ, Fac Sci, Shibin Al Kawm, Egypt
[8] Galala Univ, Fac Comp Sci & Engn, Suze 435611, Egypt
[9] Ajman Univ, Artificial Intelligence Res Ctr AIRC, Ajman 346, U Arab Emirates
[10] Lebanese Amer Univ, Dept Elect & Comp Engn, Byblos 135053, Lebanon
[11] Middle East Univ, MEU Res Unit, Amman, Jordan
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2024年 / 12卷 / 02期
关键词
CO2; N2; CCUS; Marine predators algorithm; Seagull optimization algorithm; BINARY GASEOUS-MIXTURES; DIFFUSION-COEFFICIENT; DIOXIDE; PRESSURES; DENSITY; NITROGEN; ARGON; NEON; TEMPERATURES; METHANE;
D O I
10.1016/j.jece.2024.112210
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crucial for carbon capture, utilization, and storage (CCUS) initiatives and diverse industries, heat transfer underscores the need for a precise assessment of carbon dioxide (CO2) and nitrogen (N2) viscosities in gaseous blends across various temperatures. This research pioneers an intelligent model by enhancing the dendritic neural regression (DNR) framework, employing the Seagull Optimization Algorithm with Marine Predator Algorithm (SOAMPA) for optimal predictions. Leveraging recent advancements in metaheuristic optimization techniques, the study reveals the superior performance of the novel SOAMPA approach in predictive accuracy, marking a significant breakthrough in predicting CO2-N2 mixture viscosities with implications for advancing CCUS projects and diverse industries. The optimized DNR model, empowered by the modified SOAMPA optimization technique, contributes to estimating the viscosity of N2-CO2 mixture gases. Utilizing inputs like pressure, temperature, mole fraction of N2, and model fraction of CO2, the models are trained and tested on a dataset comprising over 3030 data samples from public literature. Key contributions encompass proposing an optimized DNR approach, introducing the modified SOAMPA technique, and demonstrating its superiority over established optimization methods in conjunction with the traditional DNR model for predicting viscosity based on real experimental datasets.
引用
收藏
页数:11
相关论文
共 96 条
[81]   Tri-Reforming of Methane: Thermodynamics, Operating Conditions, Reactor Technology and Efficiency Evaluation-A Review [J].
Soleimani, Samira ;
Lehner, Markus .
ENERGIES, 2022, 15 (19)
[82]   A Simple Dendritic Neural Network Model-Based Approach for Daily PM2.5 Concentration Prediction [J].
Song, Zhenyu ;
Tang, Cheng ;
Ji, Junkai ;
Todo, Yuki ;
Tang, Zheng .
ELECTRONICS, 2021, 10 (04) :1-21
[83]   Prediction of petroleum viscosity from molecular weight and density [J].
Stratiev, Dicho ;
Shishkova, Ivelina ;
Dinkov, Rosen ;
Nenov, Svetoslav ;
Sotirov, Sotir ;
Sotirova, Evdokia ;
Kolev, Iliyan ;
Ivanov, Vitaly ;
Ribagin, Simeon ;
Atanassov, Krassimir ;
Stratiev, Danail ;
Yordanov, Dobromir ;
Nedanovski, Dimitar .
FUEL, 2023, 331
[84]   Compositional simulation of CO2 Huff-n-Puff process in Middle Bakken tight oil reservoirs with hydraulic fractures [J].
Sun, Runxuan ;
Yu, Wei ;
Xu, Feng ;
Pu, Hui ;
Miao, Jijun .
FUEL, 2019, 236 :1446-1457
[85]   Fundamental PVT calculations for associated and gas/condensate natural-gas systems [J].
Sutton, Robert P. .
SPE RESERVOIR EVALUATION & ENGINEERING, 2007, 10 (03) :270-284
[86]   Adopting a dendritic neural model for predicting stock price index movement [J].
Tang, Yajiao ;
Song, Zhenyu ;
Zhu, Yulin ;
Hou, Maozhang ;
Tang, Cheng ;
Ji, Junkai .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 205
[87]   A model of the neuron based on dendrite mechanisms [J].
Tang, Z ;
Tamura, H ;
Kuratu, M ;
Ishizuka, O ;
Tanno, K .
ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2001, 84 (08) :11-24
[88]   Direct solar-driven reduction of greenhouse gases into hydrocarbon fuels incorporating thermochemical energy storage via modified calcium looping [J].
Teng, Liang ;
Xuan, Yimin ;
Da, Yun ;
Sun, Chen ;
Liu, Xianglei ;
Ding, Yulong .
CHEMICAL ENGINEERING JOURNAL, 2022, 440
[89]   Long-term viability of carbon sequestration in deep-sea sediments [J].
Teng, Yihua ;
Zhang, Dongxiao .
SCIENCE ADVANCES, 2018, 4 (07)
[90]   Data-driven machine learning models for the prediction of hydrogen solubility in aqueous systems of varying salinity: Implications for underground hydrogen storage [J].
Thanh, Hung Vo ;
Zhang, Hemeng ;
Dai, Zhenxue ;
Zhang, Tao ;
Tangparitkul, Suparit ;
Min, Baehyun .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 55 :1422-1433