Smart predictive viscosity mixing of CO2-N2 using optimized dendritic neural networks to implicate for carbon capture utilization and storage

被引:14
作者
Ewees, Ahmed A. [1 ]
Thanh, Hung Vo [2 ,3 ,11 ]
Al-qaness, Mohammed A. A. [4 ,5 ]
Abd Elaziz, Mohamed [6 ,8 ,9 ,10 ]
Samak, Ahmed H. [7 ]
机构
[1] Univ Bisha, Coll Comp & Informat Syst, Dept Informat Sci & Cybersecur, POB 551, Bisha, Saudi Arabia
[2] Van Lang Univ, Inst Computat Sci & Artificial Intelligence, Lab Computat Mech, Ho Chi Minh City, Vietnam
[3] Van Lang Univ, Fac Mech Elect & Comp Engn, Sch Technol, Ho Chi Minh City, Vietnam
[4] Zhejiang Normal Univ, Coll Phys & Elect Informat Engn, Jinhua 321004, Peoples R China
[5] Zhejiang Optoelect Res Inst, Jinhua 321004, Peoples R China
[6] Zagazig Univ, Fac Sci, Dept Math, Zagazig 44519, Egypt
[7] Menoufia Univ, Fac Sci, Shibin Al Kawm, Egypt
[8] Galala Univ, Fac Comp Sci & Engn, Suze 435611, Egypt
[9] Ajman Univ, Artificial Intelligence Res Ctr AIRC, Ajman 346, U Arab Emirates
[10] Lebanese Amer Univ, Dept Elect & Comp Engn, Byblos 135053, Lebanon
[11] Middle East Univ, MEU Res Unit, Amman, Jordan
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2024年 / 12卷 / 02期
关键词
CO2; N2; CCUS; Marine predators algorithm; Seagull optimization algorithm; BINARY GASEOUS-MIXTURES; DIFFUSION-COEFFICIENT; DIOXIDE; PRESSURES; DENSITY; NITROGEN; ARGON; NEON; TEMPERATURES; METHANE;
D O I
10.1016/j.jece.2024.112210
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crucial for carbon capture, utilization, and storage (CCUS) initiatives and diverse industries, heat transfer underscores the need for a precise assessment of carbon dioxide (CO2) and nitrogen (N2) viscosities in gaseous blends across various temperatures. This research pioneers an intelligent model by enhancing the dendritic neural regression (DNR) framework, employing the Seagull Optimization Algorithm with Marine Predator Algorithm (SOAMPA) for optimal predictions. Leveraging recent advancements in metaheuristic optimization techniques, the study reveals the superior performance of the novel SOAMPA approach in predictive accuracy, marking a significant breakthrough in predicting CO2-N2 mixture viscosities with implications for advancing CCUS projects and diverse industries. The optimized DNR model, empowered by the modified SOAMPA optimization technique, contributes to estimating the viscosity of N2-CO2 mixture gases. Utilizing inputs like pressure, temperature, mole fraction of N2, and model fraction of CO2, the models are trained and tested on a dataset comprising over 3030 data samples from public literature. Key contributions encompass proposing an optimized DNR approach, introducing the modified SOAMPA technique, and demonstrating its superiority over established optimization methods in conjunction with the traditional DNR model for predicting viscosity based on real experimental datasets.
引用
收藏
页数:11
相关论文
共 96 条
[1]   Hybrid machine learning algorithms to predict condensate viscosity in the near wellbore regions of gas condensate reservoirs [J].
Abad, Abouzar Rajabi Behesht ;
Mousavi, Seyedmohammadvahid ;
Mohamadian, Nima ;
Wood, David A. ;
Ghorbani, Hamzeh ;
Davoodi, Shadfar ;
Alvar, Mehdi Ahmadi ;
Shahbazi, Khalil .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 95
[2]   Numerical modelling of long-term CO2 storage mechanisms in saline aquifers using the Sleipner benchmark dataset [J].
Akai, Takashi ;
Kuriyama, Takashi ;
Kato, Shigeru ;
Okabe, Hiroshi .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2021, 110
[3]   Viscosity measurements of (CH4 + C3H8 + CO2) mixtures at temperatures between (203 and 420) K and pressures between (3 and 31) MPa [J].
Al Ghafri, Saif Z. S. ;
Czubinski, Fernando F. ;
May, Eric F. .
FUEL, 2018, 231 :187-196
[4]   Performance evaluation of boosting machine learning algorithms for lithofacies classification in heterogeneous carbonate reservoirs [J].
Al-Mudhafar, Watheq J. ;
Abbas, Mohammed A. ;
Wood, David A. .
MARINE AND PETROLEUM GEOLOGY, 2022, 145
[5]   Rapid evaluation and optimization of carbon dioxide-enhanced oil recovery using reduced-physics proxy models [J].
Al-Mudhafar, Watheq J. ;
Rao, Dandina N. ;
Srinivasan, Sanjay ;
Hung Vo Thanh ;
Al Lawe, Erfan M. .
ENERGY SCIENCE & ENGINEERING, 2022, 10 (10) :4112-4135
[6]   Integrating machine learning and data analytics for geostatistical characterization of clastic reservoirs [J].
Al-Mudhafar, Watheq J. .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 195
[7]  
Al-qaness M.A.A., 2022, Entropy, P1
[8]   Wind Power Forecasting Using Optimized Dendritic Neural Model Based on Seagull Optimization Algorithm and Aquila Optimizer [J].
Al-qaness, Mohammed A. A. ;
Ewees, Ahmed A. A. ;
Abd Elaziz, Mohamed ;
Samak, Ahmed H. H. .
ENERGIES, 2022, 15 (24)
[9]   Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting [J].
Al-qaness, Mohammed A. A. ;
Ewees, Ahmed A. ;
Fan, Hong ;
Abualigah, Laith ;
Abd Elaziz, Mohamed .
APPLIED ENERGY, 2022, 314
[10]  
Ali J., 2022, Hydrocarbon Potential Assessment of Carbonate-Bearing Sediments in a Meyal Oil Field, Pakistan: Insights from Logging Data Using Machine Learning and Quanti Elan Modeling, DOI [10.1021/acsomega, DOI 10.1021/ACSOMEGA]