Modeling Temperature-Dependent Electron Thermal Diffuse Scattering via Machine-Learned Interatomic Potentials and Path-Integral Molecular Dynamics

被引:0
|
作者
Kim, Dennis S. [1 ]
Xu, Michael [1 ]
Lebeau, James M. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
PHASE-TRANSITION; PHONON; SRTIO3; DIFFRACTION; DISPERSION; MECHANICS;
D O I
10.1103/PhysRevLett.132.086301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electron thermal diffuse scattering is shown to be sensitive to subtle changes in atomic vibrations and shows promise in assessing lattice dynamics at nanometer resolution. Here, we demonstrate that machinelearned interatomic potentials (MLIPs) and path -integral molecular dynamics can accurately capture the potential energy landscape and lattice dynamics needed to describe electron thermal diffuse scattering. Using SrTiO3 as a test bed at cryogenic and room temperatures, we compare electron thermal diffuse scattering simulations using different approximations to incorporate thermal motion. Only when the simulations are based on quantum mechanically accurate MLIPs in combination with path -integral molecular dynamics that include nuclear quantum effects is there excellent agreement with experiments.
引用
收藏
页数:8
相关论文
共 10 条
  • [1] Development and evaluation of machine-learned interatomic potentials for carbon nanotubes for molecular dynamics simulations
    Choyal, Vijay
    Mishra, Saurabh
    Luhadiya, Nitin
    Kundalwal, S. I.
    CARBON LETTERS, 2025,
  • [2] Developing machine-learned potentials to simultaneously capture the dynamics of excess protons and hydroxide ions in classical and path integral simulations
    Atsango, Austin O.
    Morawietz, Tobias
    Marsalek, Ondrej
    Markland, Thomas E.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (07):
  • [3] Lattice dynamics modeling of thermal transport in solids using machine-learned atomic cluster expansion potentials: A tutorial
    Guo, Liben
    Liu, Yuanbin
    Yang, Lei
    Cao, Bingyang
    JOURNAL OF APPLIED PHYSICS, 2025, 137 (08)
  • [4] Measuring temperature-dependent thermal diffuse scattering using scanning transmission electron microscopy
    Wehmeyer, Geoff
    Bustillo, Karen C.
    Minor, Andrew M.
    Dames, Chris
    APPLIED PHYSICS LETTERS, 2018, 113 (25)
  • [5] Molecular dynamics study of thermal conductivities of cubic diamond, lonsdaleite, and nanotwinned diamond via machine-learned potential
    Xiong, Jia-Hao
    Qi, Zi-Jun
    Liang, Kang
    Sun, Xiang
    Sun, Zhan-Peng
    Wang, Qi-Jun
    Chen, Li-Wei
    Wu, Gai
    Shen, Wei
    CHINESE PHYSICS B, 2023, 32 (12)
  • [6] Molecular dynamics study of thermal conductivities of cubic diamond, lonsdaleite, and nanotwinned diamond via machine-learned potential
    熊佳豪
    戚梓俊
    梁康
    孙祥
    孙展鹏
    汪启军
    陈黎玮
    吴改
    沈威
    Chinese Physics B, 2023, (12) : 680 - 687
  • [7] Untangling high-temperature thermal expansion and lattice thermal conductivity behavior of vanadium using machine-learned molecular dynamics
    Malgope, Samiran
    Gupta, Mayanak K.
    Bag, Sourav
    Mittal, Ranjan
    Bhattacharya, Shovit
    Singh, Ajay
    Chaplot, Samrath L.
    PHYSICAL REVIEW B, 2024, 110 (05)
  • [8] Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: Case studies on thermal properties of materials
    Ying, Penghua
    Zhou, Wenjiang
    Svensson, Lucas
    Berger, Esmee
    Fransson, Erik
    Eriksson, Fredrik
    Xu, Ke
    Liang, Ting
    Xu, Jianbin
    Song, Bai
    Chen, Shunda
    Erhart, Paul
    Fan, Zheyong
    JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (06):
  • [9] Mechanisms of temperature-dependent thermal transport in amorphous silica from machine-learning molecular dynamics
    Liang, Ting
    Ying, Penghua
    Xu, Ke
    Ye, Zhenqiang
    Ling, Chao
    Fan, Zheyong
    Xu, Jianbin
    PHYSICAL REVIEW B, 2023, 108 (18)
  • [10] Dissimilar thermal transport properties in κ-Ga2O3 and β-Ga2O3 revealed by homogeneous nonequilibrium molecular dynamics simulations using machine-learned potentials
    Wang, Xiaonan
    Yang, Jinfeng
    Ying, Penghua
    Fan, Zheyong
    Zhang, Jin
    Sun, Huarui
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (06)