Pervaporation-assisted crystallization of active pharmaceutical ingredients (APIs)

被引:3
|
作者
Schmitz, Claire [1 ]
Hussain, Mohammed Noorul [1 ]
Meers, Tom [1 ]
Xie, Zongli [2 ]
Zhu, Liping [3 ,4 ]
Van Gerven, Tom [1 ]
Yang, Xing [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Chem, Celestijnenlaan 200F,Bus 02404, B-3001 Leuven, Belgium
[3] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Peoples R China
[4] Zhejiang Univ, MOE Engn Res Ctr Membrane & Water Treatment Techno, Hangzhou 310027, Peoples R China
来源
ADVANCED MEMBRANES | 2023年 / 3卷
基金
比利时弗兰德研究基金会;
关键词
Membrane-assisted crystallization; Pervaporation; Active pharmaceutical ingredient; Ortho -aminobenzoic acid; Polymorphism control; MEMBRANE DISTILLATION; PROCESS INTENSIFICATION; POLYMORPHISM; POLARIZATION; TEMPERATURE; NUCLEATION; ACID;
D O I
10.1016/j.advmem.2023.100069
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Crystallization of active pharmaceutical ingredients is essential in pharmaceutical production. Pervaporation, a thermally-driven membrane process, has not been explored in API crystallization. Here we demonstrated PVassisted crystallization (PVaC) for simultaneous recovery of API ortho-aminobenzoic acid (o-ABA) and pure solvent. The PERVAP 4060 made of organophilic polymer was found suitable given the reasonable flux of ethanol of 3.69 kg/m2/h at 45 degrees C with saturated solution and 99.9% o-ABA rejection. A parametric study showed that the membrane permeance increased with feed flow rate and temperature, but decreased with supersaturation. In the sequential PVaC, the stable form I of o-ABA was obtained with 25 degrees C PV; while with 45 degrees C PV, only metastable form II crystallized. In the simultaneous PVaC, at 0 time lag pure form II was produced; by increasing time lag, form I increased significantly. The results indicated potential routes to control polymorph formation via PVaC, providing a promising alternative for API production.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Polymorphism and Crystallization of Active Pharmaceutical Ingredients (APIs)
    Lu, Jie
    Rohani, Sohrab
    CURRENT MEDICINAL CHEMISTRY, 2009, 16 (07) : 884 - 905
  • [2] Membrane assisted crystallization of active pharmaceutical ingredients (APIs) by forward osmosis and its effect on crystal size and morphology
    Patel, Arunkumar M.
    Patel, Sanjaykumar R.
    MATERIALS TODAY-PROCEEDINGS, 2022, 57 : 2406 - 2411
  • [3] A sourcing strategy for active pharmaceutical ingredients (APIs)
    Clarke, GM
    Schnurrenberger, KP
    Scholl, B
    CHIMIA, 1998, 52 (06) : 257 - 259
  • [4] Health effects of exposure to active pharmaceutical ingredients (APIs)
    Heron, RJL
    Pickering, FC
    OCCUPATIONAL MEDICINE-OXFORD, 2003, 53 (06): : 357 - 362
  • [5] Separation of Active Pharmaceutical Ingredients (APIs) from Excipients in Pharmaceutical Formulations
    Atwood, Jerry L.
    CRYSTAL GROWTH & DESIGN, 2015, 15 (06) : 2874 - 2877
  • [7] Pervaporation-assisted catalytic conversion of xylose to furfural
    Wang, Alex
    Balsara, Nitash P.
    Bell, Alexis T.
    GREEN CHEMISTRY, 2016, 18 (14) : 4073 - 4085
  • [8] Synthetic Development of Key Intermediates and Active Pharmaceutical Ingredients (APIs)
    Laha, Joydev K.
    Zhou, Jianrong Steve
    SYNTHESIS-STUTTGART, 2024, 56 (04): : III - IV
  • [9] From form to function: Crystallization of active pharmaceutical ingredients
    Variankaval, Narayan
    Cote, Aaron S.
    Doherty, Michael F.
    AICHE JOURNAL, 2008, 54 (07) : 1682 - 1688
  • [10] Process Analytical Technology for Crystallization of Active Pharmaceutical Ingredients
    Malwade, Chandrakant R.
    Qu, Haiyan
    CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (21) : 2456 - 2472