Information Transfer in Semi-Supervised Semantic Segmentation

被引:6
|
作者
Wu, Jiawei [1 ,2 ]
Fan, Haoyi [3 ]
Li, Zuoyong [2 ]
Liu, Guang-Hai [4 ]
Lin, Shouying [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Mech & Elect Engn, Fuzhou 350121, Peoples R China
[2] Fujian Prov Key Lab Informat Proc & Intelligent Co, Fuzhou 350121, Peoples R China
[3] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Peoples R China
[4] Guangxi Normal Univ, Coll Comp Sci & Informat Technol, Guilin 541004, Peoples R China
关键词
Semantic segmentation; Training; Task analysis; Semantics; Bars; Semisupervised learning; Entropy; Semi-supervised learning; semantic segmentation; semi-supervised semantic segmentation; information transfer; NETWORK;
D O I
10.1109/TCSVT.2023.3292285
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Enhancing the accuracy of dense classification with limited labeled data and abundant unlabeled data, known as semi-supervised semantic segmentation, is an essential task in vision comprehension. Due to the lack of annotation in unlabeled data, additional pseudo-supervised signals, typically pseudo-labeling, are required to improve the performance. Although effective, these methods fail to consider the internal representation of neural networks and the inherent class-imbalance in dense samples. In this work, we propose an information transfer theory, which establishes a theoretical relationship between shallow and deep representations. We further apply this theory at both the semantic and pixel levels, referred to as IIT-SP, to align different types of information. The proposed IIT-SP optimizes shallow representations to match the target representation required for segmentation. This limits the upper bound of deep representations to enhance segmentation performance. We also propose a momentum-based Cluster-State bar that updates class status online, along with a HardClassMix augmentation and a loss weighting technique to address class imbalance issues based on it. The effectiveness of the proposed method is demonstrated through comparative experiments on PASCAL VOC and Cityscapes benchmarks, where the proposed IIT-SP achieves state-of-the-art performance, reaching mIoU of 68.34% with only 2% labeled data on PASCAL VOC and mIoU of 64.20% with only 12.5% labeled data on Cityscapes.
引用
收藏
页码:1174 / 1185
页数:12
相关论文
共 50 条
  • [11] A Residual Correction Approach for Semi-supervised Semantic Segmentation
    Li, Haoliang
    Zheng, Huicheng
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 90 - 102
  • [12] Revisiting Network Perturbation for Semi-supervised Semantic Segmentation
    Li, Sien
    Wang, Tao
    Hui, Ruizhe
    Liu, Wenxi
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XII, 2025, 15042 : 157 - 171
  • [13] ROBUST ADVERSARIAL LEARNING FOR SEMI-SUPERVISED SEMANTIC SEGMENTATION
    Zhang, Jia
    Li, Zhixin
    Zhang, Canlong
    Ma, Huifang
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 728 - 732
  • [14] Semi-supervised Learning for Segmentation Under Semantic Constraint
    Ganaye, Pierre-Antoine
    Sdika, Michael
    Benoit-Cattin, Hugues
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 : 595 - 602
  • [15] SEMI-SUPERVISED SEMANTIC SEGMENTATION CONSTRAINED BY CONSISTENCY REGULARIZATION
    Li, Xiaoqiang
    He, Qin
    Dai, Songmin
    Wu, Pin
    Tong, Weiqin
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [16] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
    Chen, Xiaokang
    Yuan, Yuhui
    Zeng, Gang
    Wang, Jingdong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2613 - 2622
  • [17] Semi-supervised Semantic Segmentation with Complementary Reconfirmation Mechanism
    Xiao, Yifan
    Dong, Jing
    Zhang, Qiang
    Yi, Pengfei
    Liu, Rui
    Wei, Xiaopeng
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 182 - 194
  • [18] Enhanced Soft Label for Semi-Supervised Semantic Segmentation
    Ma, Jie
    Wang, Chuan
    Liu, Yang
    Lin, Liang
    Li, Guanbin
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1185 - 1195
  • [19] An efficient and scalable semi-supervised framework for semantic segmentation
    Huazheng Hao
    Hui Xiao
    Junjie Xiong
    Li Dong
    Diqun Yan
    Dongtai Liang
    Jiayan Zhuang
    Chengbin Peng
    Neural Computing and Applications, 2025, 37 (7) : 5481 - 5497
  • [20] Semi-supervised Semantic Segmentation with Error Localization Network
    Kwon, Donghyeon
    Kwak, Suha
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9947 - 9957