Offline Reinforcement Learning for Asynchronous Task Offloading in Mobile Edge Computing

被引:2
|
作者
Zhang, Bolei [1 ]
Xiao, Fu [1 ]
Wu, Lifa [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp, Nanjing 210023, Jiangsu, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT | 2024年 / 21卷 / 01期
关键词
Task offloading; mobile edge computing; offline reinforcement learning; mobile sensing; RESOURCE-ALLOCATION;
D O I
10.1109/TNSM.2023.3316626
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge servers, which are located in close proximity to mobile users, have become key components for providing augmented computation and bandwidth. As the resources of edge servers are limited and shared, it is critical for the decentralized mobile users to determine the amount of offloaded workload, to avoid competition or waste of the public resources at the edge servers. Reinforcement learning (RL) methods, which are sequential and model-free, have been widely considered as a promising approach. However, directly deploying RL in edge computing remains elusive, since arbitrary exploration in real online environments often leads to poor user experience. To avoid the costly interactions, in this paper, we propose an offline RL framework which can be optimized by using a static offline dataset only. In essence, our method first trains a supervised offline model to simulate the edge computing environment dynamics, and then optimize the offloading policy in the offline environment with cost-free interactions. As the offloading requests are mostly asynchronous, we adopt a mean-field approach that treats all neighboring users as a single agent. The problem can then be simplified and reduced to a game between only two players. Moreover, we limit the length of the offline model rollout to ensure the simulated trajectories are accurate, so that the trained offloading policies can be generalized to unseen online environments. Theoretical analyses are conducted to validate the accuracy and convergence of our algorithm. In the experiments, we first train the offline simulation environment with a real historical data set, and then optimize the offloading policy in this environment model. The results show that our algorithm can converge very fast during training. In the execution, the algorithm still achieves high performance in the online environment.
引用
收藏
页码:939 / 952
页数:14
相关论文
共 50 条
  • [41] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [42] Joint DNN partitioning and task offloading in mobile edge computing via deep reinforcement learning
    Jianbing Zhang
    Shufang Ma
    Zexiao Yan
    Jiwei Huang
    Journal of Cloud Computing, 12
  • [43] Offloading in Mobile Edge Computing Based on Federated Reinforcement Learning
    Dai, Yu
    Xue, Qing
    Gao, Zhen
    Zhang, Qiuhong
    Yang, Lei
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [44] GP-NFSP: Decentralized task offloading for mobile edge computing with independent reinforcement learning
    Hou, Jiaxin
    Chen, Meng
    Geng, Haijun
    Li, Rongzhen
    Lu, Jianyuan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 141 : 205 - 217
  • [45] Dependent Task Offloading in Edge Computing Using GNN and Deep Reinforcement Learning
    Cao, Zequn
    Deng, Xiaoheng
    Yue, Sheng
    Jiang, Ping
    Ren, Ju
    Gui, Jinsong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 21632 - 21646
  • [46] Task Offloading in Mobile Edge Computing: Intractability and Proposed Approaches
    Tan, Xing
    Emu, Mahzabeen
    Choudhury, Salimur
    2022 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT, 2022, : 775 - 778
  • [47] A Greedy Algorithm for Task Offloading in Mobile Edge Computing System
    Feng Wei
    Sixuan Chen
    Weixia Zou
    中国通信, 2018, 15 (11) : 149 - 157
  • [48] A Greedy Algorithm for Task Offloading in Mobile Edge Computing System
    Wei, Feng
    Chen, Sixuan
    Zou, Weixia
    CHINA COMMUNICATIONS, 2018, 15 (11) : 149 - 157
  • [49] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [50] A Task Offloading and Resource Allocation Strategy Based on Multi-Agent Reinforcement Learning in Mobile Edge Computing
    Jiang, Guiwen
    Huang, Rongxi
    Bao, Zhiming
    Wang, Gaocai
    FUTURE INTERNET, 2024, 16 (09)