Offline Reinforcement Learning for Asynchronous Task Offloading in Mobile Edge Computing

被引:2
|
作者
Zhang, Bolei [1 ]
Xiao, Fu [1 ]
Wu, Lifa [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp, Nanjing 210023, Jiangsu, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT | 2024年 / 21卷 / 01期
关键词
Task offloading; mobile edge computing; offline reinforcement learning; mobile sensing; RESOURCE-ALLOCATION;
D O I
10.1109/TNSM.2023.3316626
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge servers, which are located in close proximity to mobile users, have become key components for providing augmented computation and bandwidth. As the resources of edge servers are limited and shared, it is critical for the decentralized mobile users to determine the amount of offloaded workload, to avoid competition or waste of the public resources at the edge servers. Reinforcement learning (RL) methods, which are sequential and model-free, have been widely considered as a promising approach. However, directly deploying RL in edge computing remains elusive, since arbitrary exploration in real online environments often leads to poor user experience. To avoid the costly interactions, in this paper, we propose an offline RL framework which can be optimized by using a static offline dataset only. In essence, our method first trains a supervised offline model to simulate the edge computing environment dynamics, and then optimize the offloading policy in the offline environment with cost-free interactions. As the offloading requests are mostly asynchronous, we adopt a mean-field approach that treats all neighboring users as a single agent. The problem can then be simplified and reduced to a game between only two players. Moreover, we limit the length of the offline model rollout to ensure the simulated trajectories are accurate, so that the trained offloading policies can be generalized to unseen online environments. Theoretical analyses are conducted to validate the accuracy and convergence of our algorithm. In the experiments, we first train the offline simulation environment with a real historical data set, and then optimize the offloading policy in this environment model. The results show that our algorithm can converge very fast during training. In the execution, the algorithm still achieves high performance in the online environment.
引用
收藏
页码:939 / 952
页数:14
相关论文
共 50 条
  • [1] Task offloading mechanism based on federated reinforcement learning in mobile edge computing
    Li, Jie
    Yang, Zhiping
    Wang, Xingwei
    Xia, Yichao
    Ni, Shijian
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (02) : 492 - 504
  • [2] Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems
    Tang, Ming
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (06) : 1985 - 1997
  • [3] Hybrid Online-Offline Learning for Task Offloading in Mobile Edge Computing Systems
    Sohaib, Muhammad
    Jeon, Sang-Woon
    Yu, Wei
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 6873 - 6888
  • [4] Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu H.
    Gu C.
    Luo F.
    Ding W.
    Yang T.
    Zheng S.
    Gu, Chunhua (chgu@ecust.edu.cn), 1600, Science Press (57): : 1539 - 1554
  • [5] A Quantum Reinforcement Learning Approach for Joint Resource Allocation and Task Offloading in Mobile Edge Computing
    Wei, Xinliang
    Gao, Xitong
    Ye, Kejiang
    Xu, Cheng-Zhong
    Wang, Yu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (04) : 2580 - 2593
  • [6] Task offloading in Multiple-Services Mobile Edge Computing: A deep reinforcement learning algorithm
    Peng, Ziyu
    Wang, Gaocai
    Nong, Wang
    Qiu, Yu
    Huang, Shuqiang
    COMPUTER COMMUNICATIONS, 2023, 202 : 1 - 12
  • [7] Deep Reinforcement Learning Method for Task Offloading in Mobile Edge Computing Networks Based on Parallel Exploration with Asynchronous Training
    Chen, Junyan
    Jin, Lei
    Yao, Rui
    Zhang, Hongmei
    MOBILE NETWORKS & APPLICATIONS, 2024,
  • [8] Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Liu, Xinping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 847 - 861
  • [9] Request-Aware Task Offloading in Mobile Edge Computing via Deep Reinforcement Learning
    Sheng, Ziwen
    Mao, Yingchi
    Wang, Jiajun
    Nie, Hua
    Huang, Jianxin
    2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD, 2022, : 294 - 299
  • [10] Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing With Deep Reinforcement Learning
    Samy, Ahmed
    Elgendy, Ibrahim A.
    Yu, Haining
    Zhang, Weizhe
    Zhang, Hongli
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4872 - 4887