Mixup-Inspired Video Class-Incremental Learning

被引:0
作者
Long, Jinqiang [1 ]
Gao, Yizhao [1 ]
Lu, Zhiwu [1 ]
机构
[1] Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing, Peoples R China
来源
23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023 | 2023年
基金
中国国家自然科学基金;
关键词
Continual learning; Video class-incremental learning; Catastrophic forgetting; Mixup;
D O I
10.1109/ICDM58522.2023.00145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual learning aims to learn a sequence of tasks without forgetting the previously learned knowledge. Although existing memory-based approaches can he easily deployed for video Class-Incremental Learning (CIL), little efforts have been made to explore how to better exploit the data from the previous work (in the memory) for alleviating the catastrophic forgetting. In this work, we thus propose a simple yet effective framework called Mixup-Inspired Video Class-Incremental Learning (MIVCIL). The core idea of our MINIM. framework is to impose mixup on the current video data and the previous video data (from the memory buffer) to mitigate the catastrophic forgetting. By exploring different mixup strategies on the video data, our MIVCIL framework has three instantiations for video classTemental learning. We further provide a detailed analysis of the performance and computational overhead of the three instantiations on the latest benchmark vCIAMB. Experimental results show that all three instantiations achieve significant improvements over the representative/state-of-the-art methods.
引用
收藏
页码:1181 / 1186
页数:6
相关论文
共 17 条
  • [1] Rusu AA, 2016, Arxiv, DOI arXiv:1606.04671
  • [2] Memory Aware Synapses: Learning What (not) to Forget
    Aljundi, Rahaf
    Babiloni, Francesca
    Elhoseiny, Mohamed
    Rohrbach, Marcus
    Tuytelaars, Tinne
    [J]. COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 144 - 161
  • [3] Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval
    Bain, Max
    Nagrani, Arsha
    Varol, Gul
    Zisserman, Andrew
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 1708 - 1718
  • [4] When Video Classification Meets Incremental Classes
    Zhao, Hanbin
    Qin, Xin
    Su, Shihao
    Fu, Yongjian
    Lin, Zibo
    Li, Xi
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 880 - 889
  • [5] Overcoming catastrophic forgetting in neural networks
    Kirkpatricka, James
    Pascanu, Razvan
    Rabinowitz, Neil
    Veness, Joel
    Desjardins, Guillaume
    Rusu, Andrei A.
    Milan, Kieran
    Quan, John
    Ramalho, Tiago
    Grabska-Barwinska, Agnieszka
    Hassabis, Demis
    Clopath, Claudia
    Kumaran, Dharshan
    Hadsell, Raia
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) : 3521 - 3526
  • [6] Kuehne H, 2011, IEEE I CONF COMP VIS, P2556, DOI 10.1109/ICCV.2011.6126543
  • [7] PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning
    Mallya, Arun
    Lazebnik, Svetlana
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7765 - 7773
  • [8] Class-Incremental Learning for Action Recognition in Videos
    Park, Jaeyoo
    Kang, Minsoo
    Han, Bohyung
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 13678 - 13687
  • [9] iCaRL: Incremental Classifier and Representation Learning
    Rebuffi, Sylvestre-Alvise
    Kolesnikov, Alexander
    Sperl, Georg
    Lampert, Christoph H.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5533 - 5542
  • [10] High-Resolution Image Synthesis with Latent Diffusion Models
    Rombach, Robin
    Blattmann, Andreas
    Lorenz, Dominik
    Esser, Patrick
    Ommer, Bjoern
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10674 - 10685