Nonlinear degenerate Navier problem involving the weighted biharmonic operator with measure data in weighted Sobolev spaces

被引:0
|
作者
Fadil, Youssef [1 ]
El Ouaarabi, Mohamed [2 ]
Allalou, Chakir [1 ]
Oukessou, Mohamed [1 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Tech, Lab LMACS, BP 523, Beni Mellal 23000, Morocco
[2] Hassan II Univ, Fac Sci Ain Chock, Fundamental & Appl Math Lab, BP 5366, Casablanca 20100, Morocco
来源
关键词
Elliptic equations; Weighted biharmonic operator; Navier problem; Weighted Sobolev spaces; Weak solution; REGULARITY;
D O I
10.1007/s40590-023-00587-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence and uniqueness of weak solution for a nonlinear degenerate Navier problem involving the weighted biharmonic operator of the following form: Delta[Phi(z)a(z, Delta w) ] - div [nu(1)(z)K(z, del w) + nu(2)(z)L(z, w, del w) +nu(2)(z)L-0(z, w, del w) = h(0) - Sigma(n)(j=1) D(j)h(j) ,where Phi, nu(1) and nu(2) are weight functions, a : DxR(n) --> R-n, K : DxR(n) -> R-n, L : DxR xR(n) -> R-n, and L-0 : DxR xR(n) -> R are Carath & eacute;odory applications that verified some conditions, and h(0) is an element of L-1(D) and h(j) is an element of L-p '(D, nu(1- p ')(1) )(j = 1, ... , n).
引用
收藏
页数:22
相关论文
共 50 条