Development of machine learning models for the prediction of long-term feeding tube dependence after oral and oropharyngeal cancer surgery

被引:4
作者
Costantino, Andrea [1 ,2 ]
Sampieri, Claudio [3 ,4 ,5 ,8 ]
Pace, Gian Marco [1 ,2 ]
Festa, Bianca Maria [1 ,2 ]
Cerri, Luca [1 ]
Giordano, Giorgio Gregory [6 ,7 ]
Dale, Michael [5 ,6 ,7 ]
Spriano, Giuseppe [1 ,2 ]
Peretti, Giorgio [6 ,7 ]
De Virgilio, Armando [1 ,2 ]
机构
[1] Human Univ, Dept Biomed Sci, Via R Levi Montalcini,4, I-20090 Pieve Emanuele, MI, Italy
[2] IRCCS Human Res Hosp, Otorhinolaryngol Unit, Via Manzoni 56, Rozzano, M, Italy
[3] Univ Genoa, Dept Med Sci DIMES, Genoa, Italy
[4] Hosp Clin Barcelona, Funct Unit Head & Neck Tumors, Barcelona, Spain
[5] Hosp Clin Barcelona, Otorhinolaryngol Dept, Barcelona, Spain
[6] IRCCS Osped Policlin San Martino, Unit Otorhinolaryngol Head & Neck Surg, Genoa, Italy
[7] Univ Genoa, Dept Surg Sci & Integrated Diagnost DISC, Genoa, Italy
[8] Univ Genoa, Dept Expt Med DIMES, Via Leon Battista Alberti 2, I-16132 Genoa, Italy
关键词
Artificial intelligence; Squamous cell carcinoma of head and neck; Head and neck neoplasms; Enteral nutrition; Nutritional status; ENDOSCOPIC GASTROSTOMY TUBE; NECK-CANCER; ENTERAL NUTRITION; MISSING DATA; HEAD; CHEMORADIOTHERAPY; PLACEMENT; CARCINOMA; RADIOTHERAPY; IMPACT;
D O I
10.1016/j.oraloncology.2023.106643
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To predict the necessity of enteral nutrition at 28 days after surgery in patients undergoing major head and neck oncologic procedures for oral and oropharyngeal cancers.Material and methods: Data from 193 patients with oral cavity and oropharyngeal squamous cell carcinoma were retrospectively collected at two tertiary referral centers to train (n = 135) and validate (n = 58) six supervised machine learning (ML) models for binary prediction employing 29 clinical variables available pre-operatively.Results: The accuracy of the six ML models ranged between 0.74 and 0.88, while the measured area under the curve (AUC) between 0.75 and 0.87. The ML algorithms showed high specificity (range 0.87-0.96) and moderate sensitivity (range: 0.31-0.77) in detecting patients with >= 28 days feeding tube dependence. Negative predictive value was higher (range: 0.81-0.93) compared to positive predictive value (range: 0.40-0.71). Finally, the F1 score ranged between 0.35 and 0.74.Conclusions: Classification performance of the ML algorithms showed optimistic accuracy in the prediction of enteral nutrition at 28 days after surgery. Prospective studies are mandatory to define the clinical benefit of a MLbased pre-operative prediction of a personalized nutrition protocol.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Functional outcomes following chemoradiotherapy for head and neck cancer [J].
Akst, LM ;
Chan, J ;
Elson, P ;
Saxton, J ;
Strome, M ;
Adelstein, D .
OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 2004, 131 (06) :950-957
[2]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[3]   Pretreatment factors associated with functional oral intake and feeding tube use at 1 and 6 months post-radiotherapy ( plus /- chemotherapy) for head and neck cancer [J].
Barnhart, Molly K. ;
Ward, Elizabeth C. ;
Cartmill, Bena ;
Robinson, Rachelle A. ;
Simms, Virginia A. ;
Chandler, Sophie J. ;
Wurth, Elea T. ;
Smee, Robert I. .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2017, 274 (01) :507-516
[4]   Gastrostomy tube placement in patients with oropharyngeal carcinoma treated with radiotherapy or chemoradiotherapy: Factors affecting placement and dependence [J].
Bhayani, Mihir K. ;
Hutcheson, Katherine A. ;
Barringer, Denise A. ;
Lisec, Asher ;
Alvarez, Clare P. ;
Roberts, Dianna B. ;
Lai, Stephen Y. ;
Lewin, Jan S. .
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2013, 35 (11) :1634-1640
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Improving guideline sensitivity and specificity for the identification of proactive gastrostomy placement in patients with head and neck cancer [J].
Brown, Teresa E. ;
Crombie, Jane ;
Spurgin, Ann-Louise ;
Tripcony, Lee ;
Keller, Jacqui ;
Hughes, Brett G. M. ;
Dickie, Graeme ;
Kenny, Lizbeth Moira ;
Hodge, Robert A. .
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2016, 38 :E1163-E1171
[7]   Artificial Intelligence for the Otolaryngologist: A State of the Art Review [J].
Bur, Andres M. ;
Shew, Matthew ;
New, Jacob .
OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 2019, 160 (04) :603-611
[8]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[9]   Machine Learning and Prediction in Medicine - Beyond the Peak of Inflated Expectations [J].
Chen, Jonathan H. ;
Asch, Steven M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (26) :2507-2509
[10]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.7326/M14-0697, 10.1038/bjc.2014.639, 10.1111/eci.12376, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1136/bmj.g7594, 10.1186/s12916-014-0241-z, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025]