Cyberattack Detection in Social Network Messages Based on Convolutional Neural Networks and NLP Techniques

被引:3
|
作者
Coyac-Torres, Jorge E. [1 ]
Sidorov, Grigori [1 ]
Aguirre-Anaya, Eleazar [1 ]
Hernandez-Oregon, Gerardo [1 ]
机构
[1] Inst Politecn Nacl IPN, Ctr Invest Comp CIC, Av Juan Dios Batiz S-N, Mexico City 07320, Mexico
来源
MACHINE LEARNING AND KNOWLEDGE EXTRACTION | 2023年 / 5卷 / 03期
关键词
bot; CNN; cyberattack; deep learning; malware; NLP; phishing; social networks; spam;
D O I
10.3390/make5030058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social networks have captured the attention of many people worldwide. However, these services have also attracted a considerable number of malicious users whose aim is to compromise the digital assets of other users by using messages as an attack vector to execute different types of cyberattacks against them. This work presents an approach based on natural language processing tools and a convolutional neural network architecture to detect and classify four types of cyberattacks in social network messages, including malware, phishing, spam, and even one whose aim is to deceive a user into spreading malicious messages to other users, which, in this work, is identified as a bot attack. One notable feature of this work is that it analyzes textual content without depending on any characteristics from a specific social network, making its analysis independent of particular data sources. Finally, this work was tested on real data, demonstrating its results in two stages. The first stage detected the existence of any of the four types of cyberattacks within the message, achieving an accuracy value of 0.91. After detecting a message as a cyberattack, the next stage was to classify it as one of the four types of cyberattack, achieving an accuracy value of 0.82.
引用
收藏
页码:1132 / 1148
页数:17
相关论文
共 50 条
  • [1] Categorizing Sentiment Polarities in Social Networks Data Using Convolutional Neural Network
    Gaurav Meena
    Krishna Kumar Mohbey
    Ajay Indian
    SN Computer Science, 2022, 3 (2)
  • [2] A shallow-based neural network model for fake news detection in social networks
    Ramya, S. P.
    Eswari, R.
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 21 (3-4) : 360 - 382
  • [3] Convolutional Neural Network Based Handgun Detection
    Kocer, Sabri
    Akdag, Ali
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 89 - 93
  • [4] Robust Detection of Network Intrusion using Tree-based Convolutional Neural Networks
    Mishra, Sanket
    Dwivedula, Rohit
    Kshirsagar, Varad
    Hota, Chittaranjan
    CODS-COMAD 2021: PROCEEDINGS OF THE 3RD ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE & MANAGEMENT OF DATA (8TH ACM IKDD CODS & 26TH COMAD), 2021, : 233 - 237
  • [5] A Fall Detection System Based on Convolutional Neural Networks
    Wang, Haoze
    Gao, Zichang
    Lin, Wanbo
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), 2019, : 242 - 246
  • [6] Optimal Deep Learning-based Cyberattack Detection and Classification Technique on Social Networks
    Albraikan, Amani Abdulrahman
    Hassine, Siwar Ben Haj
    Fati, Suliman Mohamed
    Al-Wesabi, Fahd N.
    Hilal, Anwer Mustafa
    Motwakel, Abdelwahed
    Hamza, Manar Ahmed
    Al Duhayyim, Mesfer
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 907 - 923
  • [7] Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
    Das, Himanish Shekhar
    Das, Akalpita
    Neog, Anupal
    Mallik, Saurav
    Bora, Kangkana
    Zhao, Zhongming
    FRONTIERS IN GENETICS, 2023, 13
  • [8] An Empirical Study on Network Anomaly Detection using Convolutional Neural Networks
    Kwon, Donghwoon
    Natarajan, Kathiravan
    Suh, Sang C.
    Kim, Hyunjoo
    Kim, Jinoh
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2018, : 1595 - 1598
  • [9] Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks
    Naseer, Sheraz
    Saleem, Yasir
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (10): : 5159 - 5178
  • [10] Android Botnet Detection using Convolutional Neural Networks
    Hojjatinia, Sina
    Hamzenejadi, Sajad
    Mohseni, Hadis
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 674 - 679