Generalization Error Bounds for Multiclass Sparse Linear Classifiers

被引:0
作者
Levy, Tomer [1 ]
Abramovich, Felix [1 ]
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Feature selection; high-dimensionality; minimaxity; misclassification excess risk; sparsity; HIGH-DIMENSIONAL CLASSIFICATION; MODELS; SLOPE; REGULARIZATION; CONSISTENCY; SELECTION; LASSO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider high-dimensional multiclass classification by sparse multinomial logistic regression. Unlike binary classification, in the multiclass setup one can think about an entire spectrum of possible notions of sparsity associated with different structural assumptions on the regression coefficients matrix. We propose a computationally feasible feature selection procedure based on penalized maximum likelihood with convex penalties capturing a specific type of sparsity at hand. In particular, we consider global row-wise sparsity, double row-wise sparsity, and low-rank sparsity, and show that with the properly chosen tuning parameters the derived plug-in classifiers attain the minimax generalization error bounds (in terms of misclassification excess risk) within the corresponding classes of multiclass sparse linear classifiers. The developed approach is general and can be adapted to other types of sparsity as well.
引用
收藏
页数:35
相关论文
共 50 条
[41]   Approximation Bounds for Sparse Programs [J].
Askari, Armin ;
d'Aspremont, Alexandre ;
El Ghaoui, Laurent .
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (02) :514-530
[42]   Sparse Locally Linear Embedding [J].
Ziegelmeier, Lori ;
Kirby, Michael ;
Peterson, Chris .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 :635-644
[43]   Sparse Linear Isotonic Models [J].
Chen, Sheng ;
Banerjee, Arindam .
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
[44]   Error bounds revisited [J].
Nguyen Duy Cuong ;
Kruger, Alexander Y. .
OPTIMIZATION, 2022, 71 (04) :1021-1053
[45]   Sparse l1- and l2-Center Classifiers [J].
Calafiore, Giuseppe C. ;
Fracastoro, Giulia .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (03) :996-1009
[46]   The least error method for sparse solution reconstruction [J].
Bredies, K. ;
Kaltenbacher, B. ;
Resmerita, E. .
INVERSE PROBLEMS, 2016, 32 (09)
[47]   HYPER-PARAMETER SELECTION FOR SPARSE LS-SVM VIA MINIMIZATION OF ITS LOCALIZED GENERALIZATION ERROR [J].
Sun, Binbin ;
Ng, Wing W. Y. ;
Yeung, Daniel S. ;
Chan, Patrick P. K. .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2013, 11 (03)
[48]   Generating ensembles of heterogeneous classifiers using Stacked Generalization [J].
Paz Sesmero, M. ;
Ledezma, Agapito I. ;
Sanchis, Araceli .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 5 (01) :21-34
[49]   SPARSE MATRIX LINEAR MODELS FOR STRUCTURED HIGH-THROUGHPUT DATA [J].
Liang, Jane W. ;
Sen, Saunak .
ANNALS OF APPLIED STATISTICS, 2022, 16 (01) :169-192
[50]   BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS [J].
Castillo, Ismael ;
Schmidt-Hieber, Johannes ;
Van der Vaart, Aad .
ANNALS OF STATISTICS, 2015, 43 (05) :1986-2018