Generalization Error Bounds for Multiclass Sparse Linear Classifiers

被引:0
作者
Levy, Tomer [1 ]
Abramovich, Felix [1 ]
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Feature selection; high-dimensionality; minimaxity; misclassification excess risk; sparsity; HIGH-DIMENSIONAL CLASSIFICATION; MODELS; SLOPE; REGULARIZATION; CONSISTENCY; SELECTION; LASSO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider high-dimensional multiclass classification by sparse multinomial logistic regression. Unlike binary classification, in the multiclass setup one can think about an entire spectrum of possible notions of sparsity associated with different structural assumptions on the regression coefficients matrix. We propose a computationally feasible feature selection procedure based on penalized maximum likelihood with convex penalties capturing a specific type of sparsity at hand. In particular, we consider global row-wise sparsity, double row-wise sparsity, and low-rank sparsity, and show that with the properly chosen tuning parameters the derived plug-in classifiers attain the minimax generalization error bounds (in terms of misclassification excess risk) within the corresponding classes of multiclass sparse linear classifiers. The developed approach is general and can be adapted to other types of sparsity as well.
引用
收藏
页数:35
相关论文
共 50 条
[31]   MINIMAX SPARSE DETECTION BASED ON ONE-CLASS CLASSIFIERS [J].
Suleiman, R. F. R. ;
Mary, D. ;
Ferrari, A. .
2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, :5553-5557
[32]   To Combat Multiclass Imbalanced Problems by Aggregating Evolutionary Hierarchical Classifiers [J].
Ning, Zhihan ;
Jiang, Zhixing ;
Zhang, David .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 36 (03) :1-15
[33]   Sparse Robust Regression for Explaining Classifiers [J].
Bjorklund, Anton ;
Henelius, Andreas ;
Oikarinen, Emilia ;
Kallonen, Kimmo ;
Puolamaki, Kai .
DISCOVERY SCIENCE (DS 2019), 2019, 11828 :351-366
[34]   Lasso for sparse linear regression with exponentially β-mixing errors [J].
Xie, Fang ;
Xu, Lihu ;
Yang, Youcai .
STATISTICS & PROBABILITY LETTERS, 2017, 125 :64-70
[35]   Outlier Robust and Sparse Estimation of Linear Regression Coefficients [J].
Sasai, Takeyuki ;
Fujisawa, Hironori .
JOURNAL OF MACHINE LEARNING RESEARCH, 2025, 26
[36]   Asymptotic Normality in Linear Regression with Approximately Sparse Structure [J].
Jokubaitis, Saulius ;
Leipus, Remigijus .
MATHEMATICS, 2022, 10 (10)
[37]   Sparse principal component regression for generalized linear models [J].
Kawano, Shuichi ;
Fujisawa, Hironori ;
Takada, Toyoyuki ;
Shiroishi, Toshihiko .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 :180-196
[38]   A LINEAR PROGRAMMING APPROACH TO ERROR BOUNDS FOR RANDOM WALKS IN THE QUARTER-PLANE [J].
Goseling, Jasper ;
Boucherie, Richard J. ;
van Ommeren, Jan-Kees .
KYBERNETIKA, 2016, 52 (05) :757-784
[39]   Bagging for linear classifiers [J].
Skurichina, M ;
Duin, RPW .
PATTERN RECOGNITION, 1998, 31 (07) :909-930
[40]   On Security and Sparsity of Linear Classifiers for Adversarial Settings [J].
Demontis, Ambra ;
Russu, Paolo ;
Biggio, Battista ;
Fumera, Giorgio ;
Roli, Fabio .
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016, 2016, 10029 :322-332