Generalization Error Bounds for Multiclass Sparse Linear Classifiers

被引:0
作者
Levy, Tomer [1 ]
Abramovich, Felix [1 ]
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Feature selection; high-dimensionality; minimaxity; misclassification excess risk; sparsity; HIGH-DIMENSIONAL CLASSIFICATION; MODELS; SLOPE; REGULARIZATION; CONSISTENCY; SELECTION; LASSO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider high-dimensional multiclass classification by sparse multinomial logistic regression. Unlike binary classification, in the multiclass setup one can think about an entire spectrum of possible notions of sparsity associated with different structural assumptions on the regression coefficients matrix. We propose a computationally feasible feature selection procedure based on penalized maximum likelihood with convex penalties capturing a specific type of sparsity at hand. In particular, we consider global row-wise sparsity, double row-wise sparsity, and low-rank sparsity, and show that with the properly chosen tuning parameters the derived plug-in classifiers attain the minimax generalization error bounds (in terms of misclassification excess risk) within the corresponding classes of multiclass sparse linear classifiers. The developed approach is general and can be adapted to other types of sparsity as well.
引用
收藏
页数:35
相关论文
共 50 条
[21]   DECONET: An Unfolding Network for Analysis-Based Compressed Sensing With Generalization Error Bounds [J].
Kouni, Vicky ;
Panagakis, Yannis .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 :1938-1951
[22]   A Multiclass Classification Method Based on Decoding of Binary Classifiers [J].
Takenouchi, Takashi ;
Ishii, Shin .
NEURAL COMPUTATION, 2009, 21 (07) :2049-2081
[23]   Comparison of the performance of multiclass classifiers in chemical data: Addressing the problem of overfitting with the permutation test [J].
de Andrade, Barbara M. ;
de Gois, Jefferson S. ;
Xavier, Vinicius L. ;
Luna, Aderval S. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 201
[24]   Robust Error Density Estimation in Ultrahigh Dimensional Sparse Linear Model [J].
Zou, Feng ;
Cui, Heng Jian .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (06) :963-984
[25]   Generalization bounds of incremental SVM [J].
Zeng, Jingjing ;
Zou, Bin ;
Qin, Yimo ;
Xu, Jie .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (06)
[26]   Consistency and Generalization Bounds for Maximum Entropy Density Estimation [J].
Wang, Shaojun ;
Greiner, Russell ;
Wang, Shaomin .
ENTROPY, 2013, 15 (12) :5439-5463
[27]   EPIGRAPHICAL PROXIMAL PROJECTION FOR SPARSE MULTICLASS SVM [J].
Chierchia, Giovanni ;
Pustelnik, Nelly ;
Pesquet, Jean-Christophe ;
Pesquet-Popescu, Beatrice .
2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
[28]   Sparse non-linear denoising: Generalization performance and pattern reproducibility in functional MRI [J].
Abrahamsen, Trine Julie ;
Hansen, Lars Kai .
PATTERN RECOGNITION LETTERS, 2011, 32 (15) :2080-2085
[29]   Ensemble of sparse classifiers for high-dimensional biological data [J].
Kim, Sunghan ;
Scalzo, Fabien ;
Telesca, Donatello ;
Hu, Xiao .
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2015, 12 (02) :167-183
[30]   Generalization Error of Linear Discriminant Analysis in Spatially-Correlated Sensor Networks [J].
Varshney, Kush R. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) :3295-3301