L∞ NORM MINIMIZATION FOR NOWHERE-ZERO INTEGER EIGENVECTORS OF THE BLOCK GRAPHS OF STEINER TRIPLE SYSTEMS AND JOHNSON GRAPHS

被引:0
|
作者
Bespalov, Evgeny Andreevich [1 ]
Mogilnykh, Ivan Yurevich [1 ]
Vorob'ev, Konstantin Vasil'evich [1 ]
机构
[1] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2023年 / 20卷 / 02期
基金
俄罗斯科学基金会;
关键词
Steiner triple system; flow; strongly regular graph; Johnson graph; Grassmann graph; eigenvalue; SUM FLOWS;
D O I
10.33048/semi.2023.20.070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and the Johnson graphs. For the first eigenvalue we obtain the minimums of the L-infinity norm for several infinite series of Johnson graphs, including J(n, 3) for all n >= 63, as well as general upper and lower bounds. The minimization of the L-infinity norm for nowhere-zero integer eigenvectors with the second eigenvalue of the block graph of a Steiner triple system S is equivalent to finding the minimum nowhere-zero flow for Steiner triple system S. For the all Assmuss-Mattson Steiner triple systems of the orders greater or equal to 99 we prove that the minimum flow is bounded above by 5.
引用
收藏
页码:1125 / 1149
页数:25
相关论文
共 1 条