共 1 条
L∞ NORM MINIMIZATION FOR NOWHERE-ZERO INTEGER EIGENVECTORS OF THE BLOCK GRAPHS OF STEINER TRIPLE SYSTEMS AND JOHNSON GRAPHS
被引:0
|作者:
Bespalov, Evgeny Andreevich
[1
]
Mogilnykh, Ivan Yurevich
[1
]
Vorob'ev, Konstantin Vasil'evich
[1
]
机构:
[1] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
来源:
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA
|
2023年
/
20卷
/
02期
基金:
俄罗斯科学基金会;
关键词:
Steiner triple system;
flow;
strongly regular graph;
Johnson graph;
Grassmann graph;
eigenvalue;
SUM FLOWS;
D O I:
10.33048/semi.2023.20.070
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and the Johnson graphs. For the first eigenvalue we obtain the minimums of the L-infinity norm for several infinite series of Johnson graphs, including J(n, 3) for all n >= 63, as well as general upper and lower bounds. The minimization of the L-infinity norm for nowhere-zero integer eigenvectors with the second eigenvalue of the block graph of a Steiner triple system S is equivalent to finding the minimum nowhere-zero flow for Steiner triple system S. For the all Assmuss-Mattson Steiner triple systems of the orders greater or equal to 99 we prove that the minimum flow is bounded above by 5.
引用
收藏
页码:1125 / 1149
页数:25
相关论文