Lie algebra;
Nilpotent and solvable Lie algebras;
Lie bracket;
Poisson bracket;
Nambu bracket;
ax plus b-group;
POISSON;
CLASSIFICATION;
D O I:
10.1016/j.geomphys.2023.104959
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We present a new look at the description of real finite-dimensional Lie algebras. The basic ingredient is a pair (F, v) consisting of a linear mapping F & ISIN; End(V) with an eigenvector v. This pair allows to build a Lie bracket on a dual space to a linear space V. The Lie algebra obtained in this way is solvable. In particular, when F is nilpotent, the Lie algebra is actually nilpotent. We show that these solvable algebras are the basic bricks of the construction of all other Lie algebras. Using relations between the Lie algebra, the Lie- Poisson structure and the Nambu bracket, we show that the algebra invariants (Casimir functions) are solutions of an equation which has an interesting geometric significance. Several examples illustrate the importance of these constructions.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
机构:
Univ Nacl Autonoma Mexico, FES Cuautitlan, Cuautitlan 54740, Edo De Mexico, Mexico
Sobolev Inst Math, Novosibirsk 630090, RussiaUniv Nacl Autonoma Mexico, FES Cuautitlan, Cuautitlan 54740, Edo De Mexico, Mexico
Kharchenko, V. K.
Shestakov, I. P.
论文数: 0引用数: 0
h-index: 0
机构:
Sobolev Inst Math, Novosibirsk 630090, Russia
Univ Sao Paulo, Inst Matemat & Estat, BR-05315970 Sao Paulo, BrazilUniv Nacl Autonoma Mexico, FES Cuautitlan, Cuautitlan 54740, Edo De Mexico, Mexico
机构:
N China Elect Power Univ, Sch Business Adm, Beijing 102206, Peoples R ChinaN China Elect Power Univ, Sch Business Adm, Beijing 102206, Peoples R China
Yan Qing-You
Qi Jian-Xun
论文数: 0引用数: 0
h-index: 0
机构:
N China Elect Power Univ, Sch Business Adm, Beijing 102206, Peoples R ChinaN China Elect Power Univ, Sch Business Adm, Beijing 102206, Peoples R China