Bayesian estimation of the binomial parameter in sequential experiments

被引:0
作者
Bunouf, Pierre [1 ,2 ]
机构
[1] Labs Pierre Fabre, Toulouse, France
[2] Labs Pierre Fabre, 3 Ave Hubert Curien, F-31000 Toulouse, France
关键词
Objective Bayesian estimation; binomial parameter; sequential experiment; reference prior theory; Jeffreys' criterion; credible interval; frequentist properties; CONFIDENCE-INTERVALS; TRIALS; INFERENCE; BENEFIT; DESIGN;
D O I
10.1177/09622802231199160
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This article presents an objective Bayesian approach to estimating the binomial parameter in group sequential experiments with a binary endpoint. The idea of deriving design-dependent priors was first introduced using Jeffreys criterion. Another class of priors was developed based on the reference prior theory. A theoretical framework was established showing that explicit reference to the experimental design in the prior is fully Bayesian justified. Using a design-dependent prior which generalizes the reference prior, I propose a comprehensive and unified approach to the point and the interval estimations in group sequential experiments, and I evidence the good frequentist properties of the posterior estimators through comparative studies with the existing methods. The effect of the prior correction on the posterior estimates is studied in three classical designs of clinical trials. Finally, I discuss the idea of using this approach as a default choice for estimation upon sequential experiment termination.
引用
收藏
页码:2158 / 2171
页数:14
相关论文
共 50 条
  • [41] Bayesian estimation of smoothly mixing time-varying parameter GARCH models
    Chen, Cathy W. S.
    Gerlach, Richard
    Lin, Edward M. H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 76 : 194 - 209
  • [42] Fast Bayesian gravitational wave parameter estimation using convolutional neural networks
    Andres-Carcasona, M.
    Martinez, M.
    Mir, Ll M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (02) : 2887 - 2894
  • [43] Sequential Monte Carlo Methods for State and Parameter Estimation in Abruptly Changing Environments
    Nemeth, Christopher
    Fearnhead, Paul
    Mihaylova, Lyudmila
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (05) : 1245 - 1255
  • [44] Bayesian estimation and prediction with multiply Type-II censored samples of sequential order statistics from one- and two-parameter exponential distributions
    Schenk, N.
    Burkschat, M.
    Cramer, E.
    Kamps, U.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1575 - 1587
  • [45] Bayesian estimation of scaled mutation rate under the coalescent: a sequential Monte Carlo approach
    Ogundijo, Oyetunji E.
    Wang, Xiaodong
    [J]. BMC BIOINFORMATICS, 2017, 18 : 541
  • [46] Bayesian inference for fitting cardiac models to experiments: estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation
    Ramos, Alejandro Nieto
    Fenton, Flavio H.
    Cherry, Elizabeth M.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (01) : 75 - 95
  • [47] Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo
    Li, Dan
    Clements, Adam
    Drovandi, Christopher
    [J]. ECONOMETRICS AND STATISTICS, 2021, 19 : 22 - 46
  • [48] The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective
    Kruschke, John K.
    Liddell, Torrin M.
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) : 178 - 206
  • [49] Prior-free probabilistic interval estimation for binomial proportion
    Lu, Hezhi
    Jin, Hua
    Wang, Zhining
    Chen, Chao
    Lu, Ying
    [J]. TEST, 2019, 28 (02) : 522 - 542
  • [50] A Bayesian Approach for Model Selection in Fractionated Split Plot Experiments With Applications in Robust Parameter Design
    Tan, Matthias H. Y.
    Wu, C. F. Jeff
    [J]. TECHNOMETRICS, 2013, 55 (03) : 359 - 372