Bayesian estimation of the binomial parameter in sequential experiments

被引:0
作者
Bunouf, Pierre [1 ,2 ]
机构
[1] Labs Pierre Fabre, Toulouse, France
[2] Labs Pierre Fabre, 3 Ave Hubert Curien, F-31000 Toulouse, France
关键词
Objective Bayesian estimation; binomial parameter; sequential experiment; reference prior theory; Jeffreys' criterion; credible interval; frequentist properties; CONFIDENCE-INTERVALS; TRIALS; INFERENCE; BENEFIT; DESIGN;
D O I
10.1177/09622802231199160
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This article presents an objective Bayesian approach to estimating the binomial parameter in group sequential experiments with a binary endpoint. The idea of deriving design-dependent priors was first introduced using Jeffreys criterion. Another class of priors was developed based on the reference prior theory. A theoretical framework was established showing that explicit reference to the experimental design in the prior is fully Bayesian justified. Using a design-dependent prior which generalizes the reference prior, I propose a comprehensive and unified approach to the point and the interval estimations in group sequential experiments, and I evidence the good frequentist properties of the posterior estimators through comparative studies with the existing methods. The effect of the prior correction on the posterior estimates is studied in three classical designs of clinical trials. Finally, I discuss the idea of using this approach as a default choice for estimation upon sequential experiment termination.
引用
收藏
页码:2158 / 2171
页数:14
相关论文
共 50 条
  • [31] An Adaptive Bayesian Parameter Estimation of a Synchronous Generator Under Gross Errors
    Xu, Yijun
    Mili, Lamine
    Korkali, Mert
    Chen, Xiao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (08) : 5088 - 5098
  • [32] Real-Time Bayesian Parameter Estimation for Item Response Models
    Weng, Ruby Chiu-Hsing
    Coad, D. Stephen
    BAYESIAN ANALYSIS, 2018, 13 (01): : 115 - 137
  • [33] Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison
    Kruschke, John K.
    PERSPECTIVES ON PSYCHOLOGICAL SCIENCE, 2011, 6 (03) : 299 - 312
  • [34] Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach
    Koutroumpas, Konstantinos
    Ballarini, Paolo
    Votsi, Irene
    Cournede, Paul-Henry
    BIOINFORMATICS, 2016, 32 (17) : 781 - 789
  • [35] A Monte Carlo approach to quantifying model error in Bayesian parameter estimation
    White, Staci A.
    Herbei, Radu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 83 : 168 - 181
  • [36] Bayesian parameter estimation using truncated normal distributions as priors for parameters in fundamental models of chemical processes
    Gibson, Lauren A.
    McAuley, Kimberley B.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025, 103 (02) : 649 - 665
  • [37] Generator Parameter Calibration by Adaptive Approximate Bayesian Computation With Sequential Monte Carlo Sampler
    Khazeiynasab, Seyyed Rashid
    Qi, Junjian
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (05) : 4327 - 4338
  • [38] Minimax confidence intervals for the binomial parameter
    Lutsenko, MM
    Maloshevskii, SG
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 113 (01) : 67 - 77
  • [39] Frequentist evaluation of intervals estimated for a binomial parameter and for the ratio of Poisson means
    Cousins, Robert D.
    Hymes, Kathryn E.
    Tucker, Jordan
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 612 (02) : 388 - 398
  • [40] Bayesian methods for time-varying state and parameter estimation in induction machines
    Mansouri, Majdi M.
    Mohamed-Seghir, Moustafa M.
    Nounou, Hazem N.
    Nounou, Mohamed N.
    Abu-Rub, Haitham A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2015, 29 (07) : 905 - 924