New Variants of the Multi-Verse Optimizer Algorithm Adapting Chaos Theory in Benchmark Optimization

被引:2
|
作者
Amezquita, Lucio [1 ]
Castillo, Oscar [1 ]
Soria, Jose [1 ]
Cortes-Antonio, Prometeo [1 ]
机构
[1] TecNM, Tijuana Inst Technol, Calzada Tecnol S-N, Tijuana 22414, Mexico
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
FCMVO; multiverse optimizer; chaotic maps; fuzzy logic; optimization; benchmark; functions; random; Mamdani; Sugeno; dynamic adaptation; BIOGEOGRAPHY-BASED OPTIMIZATION;
D O I
10.3390/sym15071319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we present multiple variations of the Multi-verse Optimizer Algorithm (MVO) using chaotic maps, using it in the formation of new solutions. In these new variations of the MVO algorithm, which we call the Fuzzy-Chaotic Multi-verse Optimizer (FCMVO), we use multiple chaotic maps used in the literature to substitute some of the parameters for which the original algorithm used a random value in the formation of new universes or solutions. To implement chaos theory on these new variants, we also use Fuzzy Logic for dynamic parameter adaptation; the first tests are performed only using chaotic maps, and then we merge the use of Fuzzy Logic in each of these cases to analyze the improvement over the Fuzzy MVO. Subsequently, we use only the best-performing chaos maps in a new set of variants for the same cases; after these results, we observe the behavior of the algorithm in different cases. The objective of this study is to compare whether there is a significant improvement over the MVO algorithm using some of the best-performing chaotic maps in conjunction with Fuzzy Logic in benchmark mathematical functions prior to moving on to other case studies.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Loading pattern optimization of a PWR using newly developed Multi-Verse optimization algorithm
    Safari, M.
    Aghaie, M.
    Salimi, K.
    NUCLEAR ENGINEERING AND DESIGN, 2024, 426
  • [42] A new MPPT mechanism based on multi-verse optimization algorithm tuned FLC for photovoltaic systems
    Venkatanarayana, Boosa
    Rosalina, K. Mercy
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [43] Multi-Verse Optimizer as a Tool for Efficiency Improvement of Permanent Magnet Motor
    Cvetkovski, Goga
    2024 IEEE 21ST INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, PEMC 2024, 2024,
  • [44] Multi-verse optimization algorithm- and salp swarm optimization algorithm-based optimization of multilevel inverters
    Ceylan, Oguzhan
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (06): : 1935 - 1950
  • [45] Solution of Economic Dispatch Problem Using Hybrid Multi-Verse Optimizer
    Iqbal, M. Naveed
    Bhatti, Abdul Rauf
    Butt, Arslan Dawood
    Sheikh, Yawar Ali
    Paracha, Kashif Nisar
    Ashique, Ratil H.
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 208
  • [46] Optimization of Multilevel Inverters Using Novelty-driven Multi-verse Optimization Algorithm
    Ceylan, Oguzhan
    Neshat, Mehdi
    Mirjalili, Seyedali
    2021 56TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC 2021): POWERING NET ZERO EMISSIONS, 2021,
  • [47] Parameter extraction of photovoltaic generating units using multi-verse optimizer
    Ali, E. E.
    El-Hameed, M. A.
    El-Fergany, A. A.
    El-Arini, M. M.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2016, 17 : 68 - 76
  • [48] Linear Antenna Array Pattern Synthesis Using Multi-Verse Optimization Algorithm
    Raghuvanshi, Anoop
    Sharma, Abhinav
    Awasthi, Abhishek Kumar
    Singhal, Rahul
    Sharma, Abhishek
    Tiang, Sew Sun
    Wong, Chin Hong
    Lim, Wei Hong
    ELECTRONICS, 2024, 13 (17)
  • [49] A multi-objective multi-verse optimization algorithm for dynamic load dispatch problems
    Acharya, Srinivasa
    Ganesan, S.
    Kumar, D. Vijaya
    Subramanian, S.
    KNOWLEDGE-BASED SYSTEMS, 2021, 231
  • [50] Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing
    Abualigah, Laith
    Alkhrabsheh, Muhammad
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (01): : 740 - 765