Spherical Two-Distance Sets and Eigenvalues of Signed Graphs

被引:6
作者
Jiang, Zilin [1 ]
Tidor, Jonathan [2 ]
Yao, Yuan [3 ]
Zhang, Shengtong [2 ]
Zhao, Yufei [3 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
[2] Stanford Univ, Stanford, CA USA
[3] MIT, Cambridge, MA USA
关键词
Spherical two-distance set; Eigenvalue multiplicity; Signed graph; EQUIANGULAR LINES; BOUNDS; PROOF;
D O I
10.1007/s00493-023-00002-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of determining the maximum size of a spherical two-distance set with two fixed angles (one acute and one obtuse) in high dimensions. Let N-alpha,N- beta (d) denote the maximum number of unit vectors in R-d where all pairwise inner products lie in {alpha, beta}. For fixed -1 <= beta < 0 <= alpha < 1, we propose a conjecture for the limit of N-alpha,N- ss (d)/d as d -> infinity in terms of eigenvalue multiplicities of signed graphs. We determine this limit when alpha + 2 beta < 0 or (1 - alpha)/(alpha - beta) is an element of {1, root 2, root 3}. Our work builds on our recent resolution of the problem in the case of alpha = - beta (corresponding to equiangular lines). It is the first determination of lim d ->infinity N-alpha,N- beta (d)/d for any nontrivial fixed values of alpha and beta outside of the equiangular lines setting.
引用
收藏
页码:203 / 232
页数:30
相关论文
共 17 条
  • [1] Equiangular lines and spherical codes in Euclidean space
    Balla, Igor
    Draxler, Felix
    Keevash, Peter
    Sudakov, Benny
    [J]. INVENTIONES MATHEMATICAE, 2018, 211 (01) : 179 - 212
  • [2] New Bounds for Spherical Two-Distance Sets
    Barg, Alexander
    Yu, Wei-Hsuan
    [J]. EXPERIMENTAL MATHEMATICS, 2013, 22 (02) : 187 - 194
  • [4] Delsarte P., 1977, Geom. Dedicata, V6, P363, DOI DOI 10.1007/BF03187604
  • [5] Erds P., 1963, Acta Mathematica Hungarica, V14, P295
  • [6] Upper bounds for s-distance sets and equiangular lines
    Glazyrin, Alexey
    Yu, Wei-Hsuan
    [J]. ADVANCES IN MATHEMATICS, 2018, 330 : 810 - 833
  • [7] Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture
    Huang, Hao
    [J]. ANNALS OF MATHEMATICS, 2019, 190 (03) : 949 - 955
  • [8] Equiangular lines with a fixed angle
    Jiang, Zilin
    Tidor, Jonathan
    Yao, Yuan
    Zhang, Shengtong
    Zhao, Yufei
    [J]. ANNALS OF MATHEMATICS, 2021, 194 (03) : 729 - 743
  • [9] Forbidden Subgraphs for Graphs of Bounded Spectral Radius, with Applications to Equiangular Lines
    Jiang, Zilin
    Polyanskii, Alexandr
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (01) : 393 - 421
  • [10] Jiang Ziyue, 2021, arXiv