In-situ coupling of N-doped carbon dots with manganese hexacyanoferrate as a cathode material for aqueous zinc-ion batteries

被引:19
|
作者
Xue, Yutao [1 ]
Zhou, Hu [1 ]
Ji, Zhenyuan [2 ]
Shen, Xiaoping [2 ]
Cao, Jiayi [2 ]
Pu, Jinrui [2 ]
Kong, Lirong [2 ]
Yuan, Aihua [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Sch Mat Sci & Engn, Zhenjiang 212003, Peoples R China
[2] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金;
关键词
Manganese hexacyanoferrate; Aqueous zinc ion batteries; Carbon dots; Synergistic effect; Cathode materials; PRUSSIAN BLUE ANALOGS; PERFORMANCE;
D O I
10.1016/j.apsusc.2023.157580
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prussian blue analogs (PBAs) are a competitive class of aqueous Zn-ion batteries (AZIBs) cathode materials with an ideal three-dimensional open structure for rapid insertion and removal of Zn2+. Meanwhile, PBAs have the advantages of high working voltage and a simple synthesis process. However, these materials are inherently poor in electrical conductivity and are susceptible to structural collapse during cycling. These defects affect the performance of zinc storage in this type of material. Here, the integration of zero-dimensional nitrogen-doped carbon dots (NCDs) and in-situ grown manganese hexacyanoferrate (MnHCF) affords the MnHCF/NCDs cathode materials, which are applied to AZIBs. The introduction of NCDs modifies the active component of MnHCF effectively. Meanwhile, NCDs significantly enhance the overall electrical conductivity and structural stability of the composites and also provide abundant active sites for electrochemical reactions. Benefiting from these merits, the MnHCF/NCDs composite exhibits an excellent electrochemical zinc storage performance. It has a high discharge-specific capacity of 131.2 mAh g-1 at 50 mA g-1 and has outstanding cycling stability of 91% capacity retention after 1000 cycles at 1000 mA g-1. The electrochemical performance of PBAs-based cathodes for AZIBs may be improved using the straightforward and efficient method presented in this work.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Research progresses on cathode materials of aqueous zinc-ion batteries
    Fan, Zengyuan
    Wang, Jiawei
    Wu, Yunpeng
    Yan, Xuedong
    Dai, Dongmei
    Wu, Xing-Long
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 237 - 264
  • [22] Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zinc-Ion Batteries
    Chen, Lineng
    An, Qinyou
    Mai, Liqiang
    ADVANCED MATERIALS INTERFACES, 2019, 6 (17)
  • [23] Vanadium-glycerate: a novel alcohol oxide cathode material for aqueous zinc-ion batteries
    Zhang, Li
    Khan, Mustafa
    Ming, Kun
    Chen, Ying
    Liu, Junfeng
    Wang, Yong
    IONICS, 2025, : 4495 - 4504
  • [24] The progress of cathode materials in aqueous zinc-ion batteries
    Zhou, Xinchi
    Jiang, Shan
    Zhu, Siao
    Xiang, Shuangfei
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Tan, Suchong
    Pan, Zhengdao
    Rao, Xingyou
    Wu, Yutong
    Wang, Zhoulu
    Liu, Xiang
    Zhang, Yi
    Zhou, Yunlei
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)
  • [25] Carbon nanofibers enabling manganese oxide cathode superior low temperature performance for aqueous zinc-ion batteries
    Fang, Luan
    Wang, Xiaotong
    Shi, Wenyue
    Le, Zaiyuan
    Wang, Hairui
    Nie, Ping
    Xu, Tianhao
    Chang, Limin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 940
  • [26] Aqueous Zinc Ion Batteries: Manganese Oxide Cathode Active Material Properties
    Gulcan, Mehmet Feryat
    Gurmen, Sebahattin
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2024,
  • [27] Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries
    Li, Yang
    Liu, Xiaoxu
    Ji, Tianyi
    Zhang, Man
    Yan, Xueru
    Yao, Mengjie
    Sheng, Dawei
    Li, Shaodong
    Ren, Peipei
    Shen, Zexiang
    CHINESE CHEMICAL LETTERS, 2025, 36 (01)
  • [28] Microstructural Engineering of Cathode Materials for Advanced Zinc-Ion Aqueous Batteries
    Pam, Mei Er
    Yan, Dong
    Yu, Juezhi
    Fang, Daliang
    Guo, Lu
    Li, Xue Liang
    Li, Tian Chen
    Lu, Xunyu
    Ang, Lay Kee
    Amal, Rose
    Han, Zhaojun
    Yang, Hui Ying
    ADVANCED SCIENCE, 2021, 8 (01)
  • [29] Ni/Fe Bimetallic Ions Co-Doped Manganese Dioxide Cathode Materials for Aqueous Zinc-Ion Batteries
    Gao, Feifei
    Shi, Wenchao
    Jiang, Bowen
    Xia, Zhenzhi
    Zhang, Lei
    An, Qinyou
    BATTERIES-BASEL, 2023, 9 (01):
  • [30] Decoration of nickel hexacyanoferrate nanocubes onto reduced graphene oxide sheets as high-performance cathode material for rechargeable aqueous zinc-ion batteries
    Xue, Yutao
    Chen, Yao
    Shen, Xiaoping
    Zhong, Ai
    Ji, Zhenyuan
    Cheng, Jia
    Kong, Lirong
    Yuan, Aihua
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 609 : 297 - 306