Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals

被引:7
作者
Sun, Shuting [1 ]
Chen, Huayu [2 ]
Luo, Gang [1 ]
Yan, Chang [1 ]
Dong, Qunxi [1 ]
Shao, Xuexiao [2 ]
Li, Xiaowei [2 ]
Hu, Bin [1 ]
机构
[1] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[2] Lanzhou Univ, Sch Informat Sci & Engn, Gansu Prov Key Lab Wearable Comp, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
EEG; major depressive disorder; clustering; fusion; classification; FUNCTIONAL CONNECTIVITY; NETWORK; CLASSIFICATION; ABNORMALITIES; BIOMARKERS;
D O I
10.1109/JBHI.2023.3269814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
引用
收藏
页码:3152 / 3163
页数:12
相关论文
共 63 条
[1]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[2]   Investigation of global brain dynamics depending on emotion regulation strategies indicated by graph theoretical brain network measures at system level [J].
Aydin, Serap .
COGNITIVE NEURODYNAMICS, 2023, 17 (02) :331-344
[3]   Cross-validated Adaboost Classification of Emotion Regulation Strategies Identified by Spectral Coherence in Resting-State [J].
Aydin, Serap .
NEUROINFORMATICS, 2022, 20 (03) :627-639
[4]  
Azhagusundari B., 2013, Int J Innovat Technol Explor Eng, V2, P18, DOI DOI 10.1371/JOURNAL.PONE.0166017
[5]   Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes [J].
Bian, Zhijie ;
Li, Qiuli ;
Wang, Lei ;
Lu, Chengbiao ;
Yin, Shimin ;
Li, Xiaoli .
FRONTIERS IN AGING NEUROSCIENCE, 2014, 6
[6]   Resting-State Connectivity Predictors of Response to Psychotherapy in Major Depressive Disorder [J].
Crowther, Andrew ;
Smoski, Moria J. ;
Minkel, Jared ;
Moore, Tyler ;
Gibbs, Devin ;
Petty, Chris ;
Bizzell, Josh ;
Schiller, Crystal Edler ;
Sideris, John ;
Carl, Hannah ;
Dichter, Gabriel S. .
NEUROPSYCHOPHARMACOLOGY, 2015, 40 (07) :1659-1673
[7]   Depression biomarkers using non-invasive EEG: A review [J].
de Aguiar Neto, Fernando Soares ;
Garcia Rosa, Joao Luis .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2019, 105 :83-93
[8]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[9]   Resting-state connectivity biomarkers define neurophysiological subtypes of depression [J].
Drysdale, Andrew T. ;
Grosenick, Logan ;
Downar, Jonathan ;
Dunlop, Katharine ;
Mansouri, Farrokh ;
Meng, Yue ;
Fetcho, Robert N. ;
Zebley, Benjamin ;
Oathes, Desmond J. ;
Etkin, Amit ;
Schatzberg, Alan F. ;
Sudheimer, Keith ;
Keller, Jennifer ;
Mayberg, Helen S. ;
Gunning, Faith M. ;
Alexopoulos, George S. ;
Fox, Michael D. ;
Pascual-Leone, Alvaro ;
Voss, Henning U. ;
Casey, B. J. ;
Dubin, Marc J. ;
Liston, Conor .
NATURE MEDICINE, 2017, 23 (01) :28-38
[10]   Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J].
Ferrari, Alize J. ;
Santomauro, Damian F. ;
Herrera, Ana M. Mantilla ;
Shadid, Jamileh ;
Ashbaugh, Charlie ;
Erskine, Holly E. ;
Charlson, Fiona J. ;
Degenhardt, Louisa ;
Scott, James G. ;
McGrath, John J. ;
Allebeck, Peter ;
Benjet, Corina ;
Breitborde, Nicholas J. K. ;
Brugha, Traolach ;
Dai, Xiaochen ;
Dandona, Lalit ;
Dandona, Rakhi ;
Fischer, Florian ;
Haagsma, Juanita A. ;
Maria Haro, Josep ;
Kieling, Christian ;
Knudsen, Ann Kristin Skrindo ;
Kumar, G. Anil ;
Leung, Janni ;
Majeed, Azeem ;
Mitchell, Philip B. ;
Moitra, Modhurima ;
Mokdad, Ali H. ;
Molokhia, Mariam ;
Patten, Scott B. ;
Patton, George C. ;
Phillips, Michael R. ;
Soriano, Joan B. ;
Stein, Dan J. ;
Stein, Murray B. ;
Szoeke, Cassandra E., I ;
Naghavi, Mohsen ;
Hay, Simon, I ;
Murray, Christopher J. L. ;
Vos, Theo ;
Whiteford, Harvey A. .
LANCET PSYCHIATRY, 2022, 9 (02) :137-150