Time-distance vision transformers in lung cancer diagnosis from longitudinal computed tomography

被引:4
作者
Li, Thomas Z. [1 ,2 ]
Xu, Kaiwen [3 ]
Gao, Riqiang [3 ]
Tang, Yucheng [4 ]
Lasko, Thomas A. [3 ,5 ]
Maldonado, Fabien [6 ]
Sandler, Kim L. [7 ]
Landman, Bennett A. [1 ,3 ,4 ,7 ]
机构
[1] Vanderbilt Univ, Biomed Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Sch Med, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Comp Sci, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Elect & Comp Engn, Nashville, TN 37235 USA
[5] Vanderbilt Univ, Biomed Informat, Nashville, TN 37235 USA
[6] Vanderbilt Univ Sch Med, Med, Nashville, TN 37235 USA
[7] Vanderbilt Univ Sch Med, Radiol & Radiol Sci, Nashville, TN 37235 USA
来源
MEDICAL IMAGING 2023 | 2023年 / 12464卷
关键词
Lung Cancer; Pulmonary Nodules; Longitudinal Vision Transformer; Time-Distance Vision Transformer; Temporal Emphasis Model; Longitudinal CT;
D O I
10.1117/12.2653911
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Features learned from single radiologic images are unable to provide information about whether and how much a lesion may be changing over time. Time-dependent features computed from repeated images can capture those changes and help identify malignant lesions by their temporal behavior. However, longitudinal medical imaging presents the unique challenge of sparse, irregular time intervals in data acquisition. While self-attention has been shown to be a versatile and efficient learning mechanism for time series and natural images, its potential for interpreting temporal distance between sparse, irregularly sampled spatial features has not been explored. In this work, we propose two interpretations of a time-distance vision transformer (ViT) by using (1) vector embeddings of continuous time and (2) a temporal emphasis model to scale self-attention weights. The two algorithms are evaluated based on benign versus malignant lung cancer discrimination of synthetic pulmonary nodules and lung screening computed tomography studies from the National Lung Screening Trial (NLST). Experiments evaluating the time-distance ViTs on synthetic nodules show a fundamental improvement in classifying irregularly sampled longitudinal images when compared to standard ViTs. In cross-validation on screening chest CTs from the NLST, our methods (0.785 and 0.786 AUC respectively) significantly outperform a cross-sectional approach (0.734 AUC) and match the discriminative performance of the leading longitudinal medical imaging algorithm (0.779 AUC) on benign versus malignant classification. This work represents the first self-attention-based framework for classifying longitudinal medical images. Our code is available at https://github.com/tom1193/timedistance-transformer.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]  
[Anonymous], Openreview
[3]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[4]   Overview of clinical prediction models [J].
Chen, Lingxiao .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (04)
[5]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[6]  
Du YF, 2022, Arxiv, DOI arXiv:2202.10936
[7]  
Feichtenhofer C, 2022, Arxiv, DOI [arXiv:2205.09113, 10.48550/arXiv.2205.09113]
[8]   Time-distanced gates in long short-term memory networks [J].
Gao, Riqiang ;
Tang, Yucheng ;
Xu, Kaiwen ;
Huo, Yuankai ;
Bao, Shunxing ;
Antic, Sanja L. ;
Epstein, Emily S. ;
Deppen, Steve ;
Paulson, Alexis B. ;
Sandler, Kim L. ;
Massion, Pierre P. ;
Landman, Bennett A. .
MEDICAL IMAGE ANALYSIS, 2020, 65 (65)
[9]   Evaluation of Individuals With Pulmonary Nodules: When Is It Lung Cancer? Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines [J].
Gould, Michael K. ;
Donington, Jessica ;
Lynch, William R. ;
Mazzone, Peter J. ;
Midthun, David E. ;
Naidich, David P. ;
Wiener, Renda Soylemez .
CHEST, 2013, 143 (05) :E93-E120
[10]   Evaluation of screening-detected lung nodules: minimising the risk of unnecessary biopsy and surgery [J].
Gould, Michael K. .
THORAX, 2011, 66 (04) :277-279