Enhancing morphological analysis of peripheral blood cells in chronic lymphocytic leukemia with an artificial intelligence-based tool

被引:0
作者
Wang, Yan [1 ,2 ,3 ]
Liu, Hailing [1 ,2 ]
Wang, Hui [1 ,2 ,3 ]
Wu, Yujie [1 ,2 ,3 ]
Qiu, Hairong [1 ,2 ,3 ]
Qiao, Chun [1 ,2 ,3 ]
Cao, Lei [1 ,2 ]
Zhang, Jianfu [1 ,2 ,3 ]
Li, Jianyong [1 ,2 ]
Fan, Lei [1 ,2 ]
Wang, Rong [1 ,2 ,3 ]
机构
[1] Jiangsu Prov Hosp, Dept Hematol, Nanjing 210029, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Affiliated Hosp 1, Nanjing 210029, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Key Lab Hematol, Nanjing 210029, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial intelligence; Chronic lymphocytic leukemia; Disease progression; Feature selection; Morphology;
D O I
10.1016/j.leukres.2023.107310
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Real-time monitoring is essential for the management of chronic lymphocytic leukemia (CLL) pa-tients. Utilizing peripheral blood is advantageous due to its affordability and convenience. Existing methods of assessing peripheral blood films have limitations that include lack of automation, dependence on personal experience, and low repeatability and reproducibility. To overcome these challenges, we have designed an artificial intelligence-driven system that provides a clinical perspective to objectively evaluate morphologic features in CLL patients' blood cells. Methods: Based on our center's CLL dataset, we developed an automated algorithm using a deep convolutional neural network to precisely identify regions of interest on blood films and used the well-established Visual Geometry Group-16 as the encoder to segment cells and extract morphological features. This tool enabled us to extract morphological features of all lymphocytes for subsequent analysis. Results: Our study's lymphocyte identification had a recall of 0.96 and an F1 score of 0.97. Cluster analysis identified three clear, morphological groups of lymphocytes that reflect distinct stages of disease development to some extent. To investigate the longitudinal evolution of lymphocyte, we extracted cellular morphology pa-rameters at various time points from the same patient. The results showed some similar trends to those observed in the aforementioned cluster analysis. Correlation analysis further supports the prognostic potential of cell morphology-based parameters. Conclusion: Our study provides valuable insights and potential avenues for further exploration of lymphocyte dynamics in CLL. Investigating morphological changes may help in determining the optimal timing for inter-vening with CLL patients, but further research is needed.
引用
收藏
页数:7
相关论文
共 17 条
  • [1] Histologic transformation of chronic lymphocytic leukemia/small lymphocytic lymphoma
    Agbay, Rose Lou Marie C.
    Jain, Nitin
    Loghavi, Sanam
    Medeiros, L. Jeffrey
    Khoury, Joseph D.
    [J]. AMERICAN JOURNAL OF HEMATOLOGY, 2016, 91 (10) : 1036 - 1043
  • [2] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [3] Machine Learning of Bone Marrow Histopathology Identifies Genetic and Clinical Determinants in Patients with MDS
    Bruck, Oscar E.
    Lallukka-Bruck, Susanna E.
    Hohtari, Helena R.
    Ianevski, Aleksandr
    Ebeling, Freja T.
    Kovanen, Panu E.
    Kytola, Soili, I
    Aittokallio, Tero A.
    Ramos, Pedro M.
    Porkka, Kimmo, V
    Mustjoki, Satu M.
    [J]. BLOOD CANCER DISCOVERY, 2021, 2 (03): : 238 - 249
  • [4] Chronic Lymphocytic Leukemia Progression Diagnosis with Intrinsic Cellular Patterns via Unsupervised Clustering
    Chen, Pingjun
    El Hussein, Siba
    Xing, Fuyong
    Aminu, Muhammad
    Kannapiran, Aparajith
    Hazle, John D.
    Medeiros, L. Jeffrey
    Wistuba, Ignacio I.
    Jaffray, David
    Khoury, Joseph D.
    Wu, Jia
    [J]. CANCERS, 2022, 14 (10)
  • [5] Artificial intelligence-assisted mapping of proliferation centers allows the distinction of accelerated phase from large cell transformation in chronic lymphocytic leukemia
    El Hussein, Siba
    Chen, Pingjun
    Medeiros, L. Jeffrey
    Hazle, John D.
    Wu, Jia
    Khoury, Joseph D.
    [J]. MODERN PATHOLOGY, 2022, 35 (08) : 1121 - 1125
  • [6] Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia
    El Hussein, Siba
    Chen, Pingjun
    Medeiros, L. Jeffrey
    Wistuba, Ignacio I.
    Jaffray, David
    Wu, Jia
    Khoury, Joseph D.
    [J]. JOURNAL OF PATHOLOGY, 2022, 256 (01) : 4 - 14
  • [7] RETRACTED: Expanded and highly active proliferation centers identify a histological subtype of chronic lymphocytic leukemia ("accelerated" chronic lymphocytic leukemia) with aggressive clinical behavior (Retracted Article. See vol 95, pg 1620, 2010)
    Gine, Eva
    Martinez, Antoni
    Villamor, Neus
    Lopez-Guillermo, Armando
    Camos, Mireia
    Martinez, Daniel
    Esteve, Jordi
    Calvo, Xavier
    Muntanola, Ana
    Abrisqueta, Pau
    Rozman, Maria
    Rozman, Ciril
    Bosch, Francesc
    Campo, Elias
    Montserrat, Emili
    [J]. HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2010, 95 (09): : 1526 - 1533
  • [8] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [9] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [10] Histopathologic and Machine Deep Learning Criteria to Predict Lymphoma Transformation in Bone Marrow Biopsies
    Irshaid, Lina
    Bleiberg, Jonathan
    Weinberger, Ethan
    Garritano, James
    Shallis, Rory M.
    Patsenker, Jonathan
    Lindenbaum, Ofir
    Kluger, Yuval
    Katz, Samuel G.
    Xu, Mina L.
    [J]. ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2022, 146 (02) : 182 - 193