Sensing performance of apodized fiber Bragg gratings having linearly tapered profile

被引:0
|
作者
Maiti, Souryadipta [1 ]
Prakash, Suraj [2 ]
Singh, Vivek [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221005, Uttar Pradesh, India
[2] GLA Univ, Dept Phys, Mathura 281406, India
关键词
Bragg grating; Apodization; Linear tapering; Quality parameter; Sensitivity; REFRACTIVE-INDEX; TEMPERATURE; SENSORS; STRAIN;
D O I
10.1007/s11082-023-04888-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sensing performance of a linearly tapered and apodized fiber Bragg grating is estimated and optimized. Coupled mode theory in association with the transfer matrix method is utilized to develop the reflectance formula of the proposed sensor. The reflectance spectra of linearly tapered fiber Bragg gratings are plotted for various apodization profiles. The sensitivity, detection accuracy, and quality parameter of proposed sensor are compared with standard fiber Bragg grating and linearly tapered fiber Bragg gratings-based sensors. It is found that the tapering in the waveguide along with apodization further improves the sensing performance of the sensor. Although the maximum sensitivity 489 nm/RIU is obtained in Hamming apodization and maximum left side lobe - 152 dB is obtained in Barthann apodization function, these apodizations show poor detection accuracy and quality parameters due to their larger value of full width at half maxima of sensing signal. The Bessel apodization function shows maximum detection accuracy (1366) and quality parameter (420/RIU) in our all-considered linearly tapered apodized structures. Followed by Bessel apodized sensor, the Blackman apodized sensor also shows higher detection accuracy (1340) and quality parameter (412/RIU). Therefore, these two apodization functions are recommended for biosensing applications in such a tapered structure.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Sensing Properties of Thinned Phase-shifted Fiber Bragg Gratings
    Yao, Jilei
    Pu, Shengli
    Li, Yongxi
    Zhang, Rui
    Jia, Zixuan
    SENSORS AND MATERIALS, 2020, 32 (10) : 3335 - 3342
  • [22] Transversal Load Sensing With Fiber Bragg Gratings in Microstructured Optical Fibers
    Geernaert, Thomas
    Luyckx, Geert
    Voet, Eli
    Nasilowski, Tomasz
    Chah, Karima
    Becker, Martin
    Bartelt, Hartmut
    Urbanczyk, Waclaw
    Wojcik, Jan
    De Waele, Wim
    Dearieck, Joris
    Terryn, Herman
    Berghmans, Francis
    Thienpont, Hugo
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (1-4) : 6 - 8
  • [24] CVD on Optical Fibers: Tilted Fiber Bragg Gratings as Real-time Sensing Platforms
    Mandia, David J.
    Zhou, Wenjun
    Albert, Jacques
    Barry, Sean T.
    CHEMICAL VAPOR DEPOSITION, 2015, 21 (1-3) : 4 - 20
  • [25] Chirped apodized fiber Bragg gratings inverse design via deep learning
    Adibnia, Ehsan
    Ghadrdan, Majid
    Mansouri-Birjandi, Mohammad Ali
    OPTICS AND LASER TECHNOLOGY, 2025, 181
  • [26] Self-Apodization Effect in Tapered Fiber Bragg Gratings
    Markowski, Konrad
    Jedrzejewski, Kazimierz
    Slowikowski, Mateusz
    Osuch, Tomasz
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (14) : 2882 - 2887
  • [27] Novel sensing mechanisms using tilted fiber bragg gratings
    Chen, Chengkun
    Shevchenko, Yanina Y.
    Albert, Jacques
    OPTICAL WAVEGUIDE SENSING AND IMAGING, 2008, : 25 - 49
  • [28] Tilted fiber Bragg gratings and their sensing applications
    Butov, O. V.
    Tomyshev, K. A.
    Nechepurenko, I. A.
    Dorofeenko, A. V.
    Nikitov, S. A.
    PHYSICS-USPEKHI, 2022, 65 (12) : 1290 - 1302
  • [29] Regenerated Fiber Bragg Gratings in Multicore Fiber for Multi-Parameter Sensing
    Madrigal, Javier
    Barrera, David
    Sales, Salvador
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (04)
  • [30] Modelling of linearly chirped fiber Bragg gratings by the method of single expression
    H.V. Baghdasaryan
    T.M. Knyazyan
    Optical and Quantum Electronics, 2002, 34 (5) : 481 - 492