Negative differential capacitance in ultrathin ferroelectric hafnia

被引:29
作者
Jo, Sanghyun [1 ]
Lee, Hyangsook [1 ]
Choe, Duk-Hyun [1 ]
Kim, Jung-Hwa [1 ]
Lee, Yun Seong [1 ]
Kwon, Owoong [2 ]
Nam, Seunggeol [1 ]
Park, Yoonsang [1 ]
Kim, Kihong [1 ]
Chae, Byeong Gyu [1 ]
Kim, Sangwook [1 ]
Kang, Seunghun [2 ]
Moon, Taehwan [1 ]
Bae, Hagyoul [1 ,3 ]
Won, Jung Yeon [1 ]
Yun, Dong-Jin [1 ]
Jeong, Myoungho [1 ]
Lee, Hyun Hwi [4 ]
Cho, Yeonchoo [1 ]
Lee, Kwang-Hee [1 ]
Lee, Hyun Jae [1 ]
Lee, Sangjun [1 ]
Nam, Kab-Jin [5 ]
Jung, Dongjin [5 ]
Kuh, Bong Jin [5 ]
Ha, Daewon [5 ]
Kim, Yongsung [1 ]
Park, Seongjun [5 ]
Kim, Yunseok [2 ]
Lee, Eunha [1 ]
Heo, Jinseong [1 ]
机构
[1] Samsung Elect, Samsung Adv Inst Technol, Suwon, South Korea
[2] Sungkyunkwan Univ, Sch Adv Mat & Engn, Suwon, South Korea
[3] Jeonbuk Natl Univ, Dept Elect Engn, Jeonju, South Korea
[4] Pohang Accelerator Lab, Pohang, South Korea
[5] Samsung Elect, Semicond Res & Dev Ctr, Hwaseong, South Korea
关键词
ENHANCED FERROELECTRICITY; HFO2;
D O I
10.1038/s41928-023-00959-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ferroelectric zirconium-doped hafnia (Hf0.5Zr0.5O2) can be used to create negative differential capacitance behaviour in capacitors and transistor gate stacks, providing reliable enhancements in switching performance. Negative differential capacitance in ferroelectrics, which can be stabilized using a dielectric, could be used to overcome the limitations of capacitive coupling in electronic devices. However, the use of negative differential capacitance in scaled silicon-based structures-such as those used in advanced low-power logic devices-remains challenging. Here we report the electrical performance enhancement due to negative differential capacitance in metal-oxide-semiconductor capacitors based on ferroelectric zirconium-doped hafnia (Hf0.5Zr0.5O2) with a thickness down to 1 nm. The devices exhibit superior performance to physically thinner control devices without the ferroelectric zirconium-doped hafnia. An S-shaped polarization-electric field relation verifies the negative differential capacitance effect. The effect is also achieved in field-effect transistors in which high-kappa hafnia is replaced with the ferroelectric zirconium-doped hafnia, leading to an increase in on current and decrease in off current along with negative drain-induced barrier lowering. The negative differential capacitance exhibits endurance over more than 10(15) cycles and can be tuned using doping that controls the interface charges.
引用
收藏
页码:390 / +
页数:17
相关论文
共 39 条
  • [1] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [2] Ferroelectricity in hafnium oxide thin films
    Boescke, T. S.
    Mueller, J.
    Braeuhaus, D.
    Schroeder, U.
    Boettger, U.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (10)
  • [3] Endurance Characteristics of Negative Capacitance FinFETs With Negligible Hysteresis
    Cai, Yuwei
    Zhang, Qinzhu
    Zhang, Zhaohao
    Xu, Gaobo
    Luo, Yanna
    Gu, Jie
    Gan, Weizhuo
    Lin, Xiang
    Xu, Renren
    Wu, Zhenhua
    Yin, Huaxiang
    Wang, Wenwu
    Xu, Qiuxia
    Ye, Tianchun
    [J]. IEEE ELECTRON DEVICE LETTERS, 2021, 42 (02) : 260 - 263
  • [4] Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors
    Cheema, Suraj S.
    Shanker, Nirmaan
    Wang, Li-Chen
    Hsu, Cheng-Hsiang
    Hsu, Shang-Lin
    Liao, Yu-Hung
    San Jose, Matthew
    Gomez, Jorge
    Chakraborty, Wriddhi
    Li, Wenshen
    Bae, Jong-Ho
    Volkman, Steve K.
    Kwon, Daewoong
    Rho, Yoonsoo
    Pinelli, Gianni
    Rastogi, Ravi
    Pipitone, Dominick
    Stull, Corey
    Cook, Matthew
    Tyrrell, Brian
    Stoica, Vladimir A.
    Zhang, Zhan
    Freeland, John W.
    Tassone, Christopher J.
    Mehta, Apurva
    Saheli, Ghazal
    Thompson, David
    Suh, Dong Ik
    Koo, Won-Tae
    Nam, Kab-Jin
    Jung, Dong Jin
    Song, Woo-Bin
    Lin, Chung-Hsun
    Nam, Seunggeol
    Heo, Jinseong
    Parihar, Narendra
    Grigoropoulos, Costas P.
    Shafer, Padraic
    Fay, Patrick
    Ramesh, Ramamoorthy
    Mahapatra, Souvik
    Ciston, Jim
    Datta, Suman
    Mohamed, Mohamed
    Hu, Chenming
    Salahuddin, Sayeef
    [J]. NATURE, 2022, 604 (7904) : 65 - +
  • [5] Enhanced ferroelectricity in ultrathin films grown directly on silicon
    Cheema, Suraj S.
    Kwon, Daewoong
    Shanker, Nirmaan
    dos Reis, Roberto
    Hsu, Shang-Lin
    Xiao, Jun
    Zhang, Haigang
    Wagner, Ryan
    Datar, Adhiraj
    McCarter, Margaret R.
    Serrao, Claudy R.
    Yadav, Ajay K.
    Karbasian, Golnaz
    Hsu, Cheng-Hsiang
    Tan, Ava J.
    Wang, Li-Chen
    Thakare, Vishal
    Zhang, Xiang
    Mehta, Apurva
    Karapetrova, Evguenia
    Chopdekar, Rajesh, V
    Shafer, Padraic
    Arenholz, Elke
    Hu, Chenming
    Proksch, Roger
    Ramesh, Ramamoorthy
    Ciston, Jim
    Salahuddin, Sayeef
    [J]. NATURE, 2020, 580 (7804) : 478 - +
  • [6] Unexpectedly low barrier of ferroelectric switching in HfO2 via topological domain walls
    Choe, Duk-Hyun
    Kim, Sunghyun
    Moon, Taehwan
    Jo, Sanghyun
    Bae, Hagyoul
    Nam, Seung-Geol
    Lee, Yun Seong
    Heo, Jinseong
    [J]. MATERIALS TODAY, 2021, 50 : 8 - 15
  • [7] DEVONSHIRE AF, 1949, PHILOS MAG, V40, P1040
  • [8] Room-Temperature Negative Capacitance in a Ferroelectric Dielectric Super lattice Heterostructure
    Gao, Weiwei
    Khan, Asif
    Marti, Xavi
    Nelson, Chris
    Serrao, Claudy
    Ravichandran, Jayakanth
    Ramesh, Ramamoorthy
    Salahuddin, Sayeef
    [J]. NANO LETTERS, 2014, 14 (10) : 5814 - 5819
  • [9] Transient Negative Capacitance of Silicon-doped HfO2 in MFMIS and MFIS structures: experimental insights for hysteresis-free steep slope NC FETs
    Gastaldi, C.
    Saeidi, A.
    Cavalieri, M.
    Stolichnov, I.
    Muralt, P.
    Ionescu, A. M.
    [J]. 2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
  • [10] Gault B., 2012, ATOM PROBE MICROSCOP, V160, P28