Multi-Scale Feature Fusion with Attention Mechanism Based on CGAN Network for Infrared Image Colorization

被引:4
|
作者
Ai, Yibo [1 ,2 ]
Liu, Xiaoxi [1 ]
Zhai, Haoyang [1 ]
Li, Jie [3 ]
Liu, Shuangli [4 ]
An, Huilong [3 ]
Zhang, Weidong [1 ]
机构
[1] Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
[3] HBIS Mat Inst, 385 South Sports St, Shijiazhuang 050023, Peoples R China
[4] Hesteel Grp Tangsteel Co, 9 Binhe Rd, Tangshan 063000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 08期
关键词
attention mechanism module; Generative Adversarial Network (GAN); image colorization; infrared images; multi-scale feature fusion;
D O I
10.3390/app13084686
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a colorization algorithm for infrared images based on a Conditional Generative Adversarial Network (CGAN) with multi-scale feature fusion and attention mechanisms, aiming to address issues such as color leakage and unclear semantics in existing infrared image coloring methods. Firstly, we improved the generator of the CGAN network by incorporating a multi-scale feature extraction module into the U-Net architecture to fuse features from different scales, thereby enhancing the network's ability to extract features and improving its semantic understanding, which improves the problems of color leakage and blurriness during colorization. Secondly, we enhanced the discriminator of the CGAN network by introducing an attention mechanism module, which includes channel attention and spatial attention modules, to better distinguish between real and generated images, thereby improving the semantic clarity of the resulting infrared images. Finally, we jointly improved the generator and discriminator of the CGAN network by incorporating both the multi-scale feature fusion module and attention mechanism module. We tested our method on a dataset containing both infrared and near-infrared images, which retains more detailed features while also preserving the advantages of existing infrared images. The experimental results show that our proposed method achieved a peak signal-to-noise ratio (PSNR) of 16.5342 dB and a structural similarity index (SSIM) of 0.6385 on an RGB-NIR (Red, Green, Blue-Near Infrared) testing dataset, representing a 5% and 13% improvement over the original CGAN network, respectively. These results demonstrate the effectiveness of our proposed algorithm in addressing the issues of color leakage and unclear semantics in the original network. The proposed method in this paper is not only applicable to infrared image colorization but can also be widely applied to the colorization of remote sensing and CT images.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] MFFE: Multi-scale Feature Fusion Enhanced Net for image dehazing
    Zhang, Xinyu
    Li, Jinjiang
    Hua, Zhen
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 105
  • [42] Effective image tampering localization with multi-scale ConvNeXt feature fusion
    Zhu, Haochen
    Cao, Gang
    Zhao, Mo
    Tian, Huawei
    Lin, Weiguo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 98
  • [43] PMFSNet: Polarized multi-scale feature self-attention network for lightweight medical image segmentation
    Zhong, Jiahui
    Tian, Wenhong
    Xie, Yuanlun
    Liu, Zhijia
    Ou, Jie
    Tian, Taoran
    Zhang, Lei
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 261
  • [44] Multi-Scale Fusion Siamese Network Based on Three-Branch Attention Mechanism for High-Resolution Remote Sensing Image Change Detection
    Li, Yan
    Weng, Liguo
    Xia, Min
    Hu, Kai
    Lin, Haifeng
    REMOTE SENSING, 2024, 16 (10)
  • [45] Multi-scale Feature Fusion Based Dongba Character Recognition
    Luo, Haini
    Xu, Dan
    Yang, Bing
    Zhang, Haoyuan
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1571 - 1575
  • [46] UAV reaction detection based on multi-scale feature fusion
    He, Jianfeng
    Liu, Ming
    Yu, Chuanjiang
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 640 - 643
  • [47] Lightweight silkworm recognition based on Multi-scale feature fusion
    Wen, Chunming
    Wen, Jie
    Li, Jianheng
    Luo, Yunyun
    Chen, Minbo
    Xiao, Zhanpeng
    Xu, Qing
    Liang, Xiang
    An, Hui
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 200
  • [48] Remote Sensing Image Denoising Based on Multi-Scale Feature Fusion and Regional Contextual Information
    Ding, Anqi
    Cai, Zhouyin
    Li, Jia
    Zhang, Junjie
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [49] Multi-Scale Feature Fusion Network with Symmetric Attention for Land Cover Classification Using SAR and Optical Images
    Xu, Dongdong
    Li, Zheng
    Feng, Hao
    Wu, Fanlu
    Wang, Yongcheng
    REMOTE SENSING, 2024, 16 (06)
  • [50] Human pose estimation based on feature enhancement and multi-scale feature fusion
    Dandan Cao
    Weibin Liu
    Weiwei Xing
    Xiang Wei
    Signal, Image and Video Processing, 2023, 17 : 643 - 650