Multi-Scale Feature Fusion with Attention Mechanism Based on CGAN Network for Infrared Image Colorization

被引:4
|
作者
Ai, Yibo [1 ,2 ]
Liu, Xiaoxi [1 ]
Zhai, Haoyang [1 ]
Li, Jie [3 ]
Liu, Shuangli [4 ]
An, Huilong [3 ]
Zhang, Weidong [1 ]
机构
[1] Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
[3] HBIS Mat Inst, 385 South Sports St, Shijiazhuang 050023, Peoples R China
[4] Hesteel Grp Tangsteel Co, 9 Binhe Rd, Tangshan 063000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 08期
关键词
attention mechanism module; Generative Adversarial Network (GAN); image colorization; infrared images; multi-scale feature fusion;
D O I
10.3390/app13084686
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a colorization algorithm for infrared images based on a Conditional Generative Adversarial Network (CGAN) with multi-scale feature fusion and attention mechanisms, aiming to address issues such as color leakage and unclear semantics in existing infrared image coloring methods. Firstly, we improved the generator of the CGAN network by incorporating a multi-scale feature extraction module into the U-Net architecture to fuse features from different scales, thereby enhancing the network's ability to extract features and improving its semantic understanding, which improves the problems of color leakage and blurriness during colorization. Secondly, we enhanced the discriminator of the CGAN network by introducing an attention mechanism module, which includes channel attention and spatial attention modules, to better distinguish between real and generated images, thereby improving the semantic clarity of the resulting infrared images. Finally, we jointly improved the generator and discriminator of the CGAN network by incorporating both the multi-scale feature fusion module and attention mechanism module. We tested our method on a dataset containing both infrared and near-infrared images, which retains more detailed features while also preserving the advantages of existing infrared images. The experimental results show that our proposed method achieved a peak signal-to-noise ratio (PSNR) of 16.5342 dB and a structural similarity index (SSIM) of 0.6385 on an RGB-NIR (Red, Green, Blue-Near Infrared) testing dataset, representing a 5% and 13% improvement over the original CGAN network, respectively. These results demonstrate the effectiveness of our proposed algorithm in addressing the issues of color leakage and unclear semantics in the original network. The proposed method in this paper is not only applicable to infrared image colorization but can also be widely applied to the colorization of remote sensing and CT images.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Fine-Grained Detection Model Based on Attention Mechanism and Multi-Scale Feature Fusion for Cocoon Sorting
    Zheng, Han
    Guo, Xueqiang
    Ma, Yuejia
    Zeng, Xiaoxi
    Chen, Jun
    Zhang, Taohong
    AGRICULTURE-BASEL, 2024, 14 (05):
  • [22] A Double Stream Person Re-Identification Method Based on Attention Mechanism and Multi-Scale Feature Fusion
    Ma, Xiao
    Lv, Wenqi
    Zhao, Meng
    IEEE ACCESS, 2023, 11 : 14612 - 14620
  • [23] Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion
    Liu, Jinyuan
    Fan, Xin
    Jiang, Ji
    Liu, Risheng
    Luo, Zhongxuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 105 - 119
  • [24] Multi-scale feature fusion residual network for Single Image Super-Resolution
    Qin, Jinghui
    Huang, Yongjie
    Wen, Wushao
    NEUROCOMPUTING, 2020, 379 (379) : 334 - 342
  • [25] Compressed multi-scale feature fusion network for single image super-resolution
    Fan, Xinxia
    Yang, Yanhua
    Deng, Cheng
    Xu, Jie
    Gao, Xinbo
    SIGNAL PROCESSING, 2018, 146 : 50 - 60
  • [26] Improved Remote Sensing Image Classification Based on Multi-Scale Feature Fusion
    Zhang, Chengming
    Chen, Yan
    Yang, Xiaoxia
    Gao, Shuai
    Li, Feng
    Kong, Ailing
    Zu, Dawei
    Sun, Li
    REMOTE SENSING, 2020, 12 (02)
  • [27] AMFF-Net: An attention-based multi-scale feature fusion network for allergic pollen detection
    Li, Jianqiang
    Wang, Quanzeng
    Xiong, Chengyao
    Zhao, Linna
    Cheng, Wenxiu
    Xu, Xi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235
  • [28] Hyperspectral image classification based on octave convolution and multi-scale feature fusion
    Li, Zhiyong
    Wen, Bo
    Luo, Yunzhong
    Li, Qiaochu
    Song, Lulu
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2022, 75 : 80 - 94
  • [29] 3D Object Detection Based on Attention and Multi-Scale Feature Fusion
    Liu, Minghui
    Ma, Jinming
    Zheng, Qiuping
    Liu, Yuchen
    Shi, Gang
    SENSORS, 2022, 22 (10)
  • [30] Liver segmentation network based on detail enhancement and multi-scale feature fusion
    Lu, Tinglan
    Qin, Jun
    Qin, Guihe
    Shi, Weili
    Zhang, Wentao
    SCIENTIFIC REPORTS, 2025, 15 (01):