Surveillance video synopsis based on spatio-temporal offset

被引:1
作者
Zhang, Yunzuo [1 ,2 ]
Guo, Kaina [1 ]
Zheng, Tingting [1 ]
机构
[1] Shijiazhuang Tiedao Univ, Sch Informat Sci & Technol, Shijiazhuang, Peoples R China
[2] Shijiazhuang Tiedao Univ, Hebei Key Lab Electromagnet Environm Effects & Inf, Shijiazhuang, Peoples R China
基金
中国国家自然科学基金;
关键词
video synopsis; saptio-temporal offset; object tube; tube optimization; OPTIMIZATION;
D O I
10.1117/1.JEI.32.1.013013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the wide popularity of surveillance cameras, video synopsis technology has become a research hotspot. The existing methods of surveillance video synopsis usually summarize the input video by shifting the object tube in the video on the time axis, which ignore the serious collision artifacts and chronological disorder between moving objects. To solve these problems, we propose a surveillance video synopsis methodology called "surveillance video synopsis based on spatio-temporal offset (STO) " that can simultaneously shift the moving object in the temporal domain and spatial domain. First, object detection and tracking algorithms are used to extract the object tube from the input video. Two collision relations are proposed by analyzing relationship between tubes to classify collision artifacts. Then, we present two spatial offset cases to find the optimal spatial offset of the object tube. Finally, an adaptive optimization frame density model is proposed to analyze the optimal temporal offset of the object tube. Simultaneously, the object tube and the background are stitched according to the STO to generate the synopsis video. Extensive experimental results demonstrate the effectiveness of the proposed method in improving frame compression rate and alleviating collision artifacts.
引用
收藏
页数:20
相关论文
共 44 条
  • [1] Ahmed A, 2017, IEEE I C SIGNAL IMAG, P512, DOI 10.1109/ICSIPA.2017.8120666
  • [2] [Anonymous], 1960, T ASME J BASIC ENG, DOI 10.1115/1.3662552
  • [3] [Anonymous], P 2006 IEEE COMP SOC
  • [4] VIBE: A POWERFUL RANDOM TECHNIQUE TO ESTIMATE THE BACKGROUND IN VIDEO SEQUENCES
    Barnich, Olivier
    Van Droogenbroeck, Marc
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 945 - 948
  • [5] Video synopsis: A survey
    Baskurt, Kemal Batuhan
    Samet, Refik
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 181 : 26 - 38
  • [6] Bewley A, 2016, IEEE IMAGE PROC, P3464, DOI 10.1109/ICIP.2016.7533003
  • [7] Blunsden S, 2010, ANN BMVA, V4, P1, DOI DOI 10.5465/19416521003654160
  • [8] Bochkovskiy A., 2020, P IEEE CVF C COMP VI, P17
  • [9] Chou C., 2015, 2015 IEEE INT C MULT, P1, DOI 10.1109/ICMEW.2015.7169855
  • [10] Fisher R., 2003, 200137540 IST