共 50 条
Effect of heat treatment on the microstructure and magnetic properties of laser powder bed fusion processed equiatomic Co-Fe
被引:6
|作者:
Liogas, Konstantinos A.
[1
,2
,7
]
Lau, Kwang Boon
[2
]
Wang, Zifan
[3
]
Brown, David N.
[4
]
Polatidis, Efthymios
[5
]
Wang, Pei
[2
,6
]
Korsunsky, Alexander M.
[1
]
机构:
[1] Univ Oxford, Dept Engn Sci, MBLEM, Parks Rd, Oxford OX1 3PJ, England
[2] Agcy Sci Technol & Res, Inst Mat Res & Engn, 2 Fusionopolis Way, Singapore 138634, Singapore
[3] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[4] Univ Birmingham, Sch Met & Mat, Edgbaston B15 2TT, England
[5] Paul Scherrer Inst, Lab Neutron Scattering & Imaging LNS, CH-5232 Villigen, Switzerland
[6] Singapore Inst Technol, Engn Cluster, 10 Dover Dr, Singapore 519961, Singapore
[7] Univ Oxford, Dept Engn Sci, MBLEM, Parks Rd, Oxford OX1 3PJ, England
基金:
英国工程与自然科学研究理事会;
关键词:
NI-FE;
ALLOYS;
TEMPERATURE;
COERCIVITY;
IRON;
PERMEABILITY;
GROWTH;
D O I:
10.1016/j.addma.2023.103499
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Equiatomic Cobalt-Iron (Co-Fe 50%at.) has great potential as a soft magnetic alloy, but its wider use has been limited by its poor workability and strength. Recent advancements in Laser Powder Bed Fusion (LPBF), an Additive Manufacturing (AM) technique, provided a new pathway for constructing fully dense, structurally sound, complex-shaped components from bulk equiatomic Co-Fe in a single process step. To obtain the desirable soft magnetic performance in the alloy, thermal post-processing with a controlled slow cooling needs to be applied. In order to identify the optimum heating conditions, several single and multiple step heat treatment profiles were performed and compared. The effects of the thermal post-processing on the microstructure, structural ordering, and functional properties of the alloy after each heat treatment were investigated using electron microscopy, neutron diffraction (ND), electron backscatter diffraction (EBSD), and quasi-static magnetic characterisation in a closed loop magnetic circuit. Results have shown that a normalisation heat treatment at 1300 K for 2-hours followed by a 4-hour primary heat treatment at 1123 K and slow cooling to room temperature produced a recrystallised microstructure characterised by predominantly equiaxed grains with an average size of up to 61 mu m, and a fully ordered B2 structure. The quasi-static soft magnetic properties obtained were favourable compared to those of commercial Co-Fe grades, with maximum relative permeability higher than 8000, coercivity as low as 112 A/m and magnetic saturation polarization of 2.39 Tesla. These findings provide the basis to enable the manufacturing of three-dimensional complex-shaped electromagnetic cores by LPBF.
引用
收藏
页数:11
相关论文