Numerical relativity higher order gravitational waveforms of eccentric, spinning, nonprecessing binary black hole mergers

被引:11
作者
Joshi, Abhishek, V [1 ,2 ]
Rosofsky, Shawn G. [1 ,2 ]
Haas, Roland [1 ,2 ]
Huerta, E. A. [2 ,3 ,4 ]
机构
[1] Univ Illinois, NCSA, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL 60439 USA
[4] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
LIGO; 1ST;
D O I
10.1103/PhysRevD.107.064038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the open source, community-driven, numerical relativity software, the EINSTEIN TOOLKIT to study the physics of eccentric, spinning, nonprecessing binary black hole mergers with mass-ratios q = {2; 4; 6}, individual dimensionless spin parameters chi 1z = +/- 0.6, chi 2z = +/- 0.3, that include higher order gravitational wave modes l <= 4, except for memory modes. Assuming stellar mass binary black hole mergers that may be detectable by the advanced LIGO detectors, we find that including modes up to l = 4 increases the signal-to-noise of compact binaries between 3.5% to 35%, compared to signals that only include the l = ImI = 2 mode. We use two waveform models, TEOBResumS and SEOBNRE, which incorporate spin and eccentricity corrections in the waveform dynamics, to quantify the orbital eccentricity of our numerical relativity catalog in a gauge-invariant manner through fitting factor calculations. Our findings indicate that the inclusion of higher order wave modes has a measurable effect in the recovery of moderately and highly eccentric black hole mergers, and thus it is essential to develop waveform models and signal processing tools that accurately describe the physics of these astrophysical sources.
引用
收藏
页数:12
相关论文
共 82 条
[1]  
Aasi J., 2015, CLASSICAL QUANT GRAV, V32, P074001, DOI [DOI 10.1088/0264-9381/32/7/074001, 10.1088/ 0264-9381/32/7/074001]
[2]   GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙ [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. .
PHYSICAL REVIEW LETTERS, 2020, 125 (10)
[3]   Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. .
ASTROPHYSICAL JOURNAL, 2019, 883 (02)
[5]   Advanced Virgo: a second-generation interferometric gravitational wave detector [J].
Acernese, F. ;
Agathos, M. ;
Agatsuma, K. ;
Aisa, D. ;
Allemandou, N. ;
Allocca, A. ;
Amarni, J. ;
Astone, P. ;
Balestri, G. ;
Ballardin, G. ;
Barone, F. ;
Baronick, J-P ;
Barsuglia, M. ;
Basti, A. ;
Basti, F. ;
Bauer, Th S. ;
Bavigadda, V. ;
Bejger, M. ;
Beker, M. G. ;
Belczynski, C. ;
Bersanetti, D. ;
Bertolini, A. ;
Bitossi, M. ;
Bizouard, M. A. ;
Bloemen, S. ;
Blom, M. ;
Boer, M. ;
Bogaert, G. ;
Bondi, D. ;
Bondu, F. ;
Bonelli, L. ;
Bonnand, R. ;
Boschi, V. ;
Bosi, L. ;
Bouedo, T. ;
Bradaschia, C. ;
Branchesi, M. ;
Briant, T. ;
Brillet, A. ;
Brisson, V. ;
Bulik, T. ;
Bulten, H. J. ;
Buskulic, D. ;
Buy, C. ;
Cagnoli, G. ;
Calloni, E. ;
Campeggi, C. ;
Canuel, B. ;
Carbognani, F. ;
Cavalier, F. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
[6]   Overview of KAGRA: Detector design and construction history [J].
Akutsu, T. ;
Ando, M. ;
Arai, K. ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Aritomi, N. ;
Aso, Y. ;
Bae, S. ;
Bae, Y. ;
Baiotti, L. ;
Bajpai, R. ;
Barton, M. A. ;
Cannon, K. ;
Capocasa, E. ;
Chan, M. ;
Chen, C. ;
Chen, K. ;
Chen, Y. ;
Chu, H. ;
Chu, Y-K ;
Eguchi, S. ;
Enomoto, Y. ;
Flaminio, R. ;
Fujii, Y. ;
Fukunaga, M. ;
Fukushima, M. ;
Ge, G. ;
Hagiwara, A. ;
Haino, S. ;
Hasegawa, K. ;
Hayakawa, H. ;
Hayama, K. ;
Himemoto, Y. ;
Hiranuma, Y. ;
Hirata, N. ;
Hirose, E. ;
Hong, Z. ;
Hsieh, B. H. ;
Huang, C-Z ;
Huang, P. ;
Huang, Y. ;
Ikenoue, B. ;
Imam, S. ;
Inayoshi, K. ;
Inoue, Y. ;
Ioka, K. ;
Itoh, Y. ;
Izumi, K. ;
Jung, K. .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (05)
[7]  
[Anonymous], 2018, Technical Report No. LIGO-T1800044
[8]   Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai-Lidov Effect [J].
Bao-Minh Hoang ;
Naoz, Smadar ;
Kocsis, Bence ;
Rasio, Frederic A. ;
Dosopoulou, Fani .
ASTROPHYSICAL JOURNAL, 2018, 856 (02)
[9]   High post-Newtonian order gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole [J].
Bini, Donato ;
Damour, Thibault ;
Geralico, Andrea .
PHYSICAL REVIEW D, 2016, 93 (12)
[10]   Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors [J].
Brown, Duncan A. ;
Kumar, Prayush ;
Nitz, Alexander H. .
PHYSICAL REVIEW D, 2013, 87 (08)