Hyperspectral Image Classification With Contrastive Graph Convolutional Network

被引:35
|
作者
Yu, Wentao [1 ,2 ]
Wan, Sheng [1 ,2 ]
Li, Guangyu [1 ,2 ]
Yang, Jian [1 ,2 ]
Gong, Chen [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, PCA Lab, Minist Educ,Key Lab Intelligent Percept & Syst Hi, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Jiangsu Key Lab Image & Video Understanding Socia, Nanjing 210094, Peoples R China
关键词
Contrastive learning; graph augmentation; graph convolutional network (GCN); hyperspectral image (HSI) classification;
D O I
10.1109/TGRS.2023.3240721
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, graph convolutional network (GCN) has been widely used in hyperspectral image (HSI) classification due to its satisfactory performance. However, the number of labeled pixels is very limited in HSI, and thus, the available supervision information is usually insufficient, which will inevitably degrade the representation ability of most existing GCN-based methods. To enhance the feature representation ability, in this article, a GCN model with contrastive learning is proposed to explore the supervision signals contained in both spectral information and spatial relations, which is termed contrastive GCN (ConGCN), for HSI classification. First, in order to mine sufficient supervision signals from spectral information, a semisupervised contrastive loss function is utilized to maximize the agreement between different views of the same node or the nodes from the same land cover category. Second, to extract the precious yet implicit spatial relations in HSI, a graph generative loss function is leveraged to explore supplementary supervision signals contained in the graph topology. In addition, an adaptive graph augmentation technique is designed to flexibly incorporate the spectral-spatial priors of HSI, which helps facilitate the subsequent contrastive representation learning. The extensive experimental results on six typical benchmark datasets firmly demonstrate the effectiveness of the proposed ConGCN in both qualitative and quantitative aspects.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Dual Graph Convolutional Network for Hyperspectral Image Classification With Limited Training Samples
    He, Xin
    Chen, Yushi
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Multiscale Short and Long Range Graph Convolutional Network for Hyperspectral Image Classification
    Zhu, Wenxiang
    Zhao, Chunhui
    Feng, Shou
    Qin, Boao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Hyperspectral Image Classification With Context-Aware Dynamic Graph Convolutional Network
    Wan, Sheng
    Gong, Chen
    Zhong, Ping
    Pan, Shirui
    Li, Guangyu
    Yang, Jian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 597 - 612
  • [34] Broad Graph Convolutional Neural Network and Its Application in Hyperspectral Image Classification
    Wang, Haoyu
    Cheng, Yuhu
    Chen, C. L. Philip
    Wang, Xuesong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (02): : 610 - 616
  • [35] Pyramid Cascaded Convolutional Neural Network with Graph Convolution for Hyperspectral Image Classification
    Pan, Haizhu
    Yan, Hui
    Ge, Haimiao
    Wang, Liguo
    Shi, Cuiping
    REMOTE SENSING, 2024, 16 (16)
  • [36] Two-Branch Deeper Graph Convolutional Network for Hyperspectral Image Classification
    Yu, Linzhou
    Peng, Jiangtao
    Chen, Na
    Sun, Weiwei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [37] Nonlocal Graph Convolutional Networks for Hyperspectral Image Classification
    Mou, Lichao
    Lu, Xiaoqiang
    Li, Xuelong
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (12): : 8246 - 8257
  • [38] Hyperspectral Image Classification with Localized Graph Convolutional Filtering
    Pu, Shengliang
    Wu, Yuanfeng
    Sun, Xu
    Sun, Xiaotong
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [39] Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification
    Dong, Yanni
    Liu, Quanwei
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1559 - 1572
  • [40] Hypergraph convolutional network for hyperspectral image classification
    Xu, Qin
    Lin, Jing
    Jiang, Bo
    Liu, Jinpei
    Luo, Bin
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21863 - 21882