SOLUTION TO A CONJECTURE OF SCHMIDT AND TULLER ON ONE-DIMENSIONAL PACKINGS AND COVERINGS

被引:4
作者
Frankl, N. O. R. A. [1 ,2 ]
Kupavskii, A. N. D. R. E. Y. [3 ,4 ]
Sagdeev, A. R. S. E. N., II [2 ,3 ]
机构
[1] Open Univ, Sch Math & Stat, Milton Keynes, England
[2] Alfred Renyi Inst Math, Budapest, Hungary
[3] MIPT, Moscow, Russia
[4] Univ Grenoble Alpes, G SCOP, CNRS, Saint Martin dheres, France
关键词
NUMBER; Z(N);
D O I
10.1090/proc/16254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2008, Schmidt and Tuller stated a conjecture concerning optimal packing and covering of integers by translates of a given three-point set. In this note, we confirm their conjecture and relate it to several other problems in combinatorics.
引用
收藏
页码:2353 / 2362
页数:10
相关论文
共 19 条
[1]  
Axenovich Maria, 2019, INTEGERS, V19
[2]  
Bhattacharya S, 2020, AM J MATH, V142, P255
[3]   On Covering by Translates of a Set [J].
Bollobas, Bela ;
Janson, Svante ;
Riordan, Oliver .
RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (1-2) :33-67
[4]  
Brass P., 2005, Research Problems in Discrete Geometry
[5]   Tiling the integers with translates of one finite set [J].
Coven, EM ;
Meyerowitz, A .
JOURNAL OF ALGEBRA, 1999, 212 (01) :161-174
[6]   SOME RESULTS ON ADDITIVE NUMBER THEORY [J].
ERDOS, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (06) :847-853
[7]  
Frankl N., 2022, ARXIV
[8]  
GOLAY MJE, 1972, J LOND MATH SOC, V4, P729
[9]   Ramsey theory in the n-space with Chebyshev metric [J].
Kupavskii, A. B. ;
Sagdeev, A. A. .
RUSSIAN MATHEMATICAL SURVEYS, 2020, 75 (05) :965-967
[10]   All finite sets are Ramsey in the maximum norm [J].
Kupavskii, Andrey ;
Sagdeev, Arsenii .
FORUM OF MATHEMATICS SIGMA, 2021, 9