Nonextensive Footprints in Dissipative and Conservative Dynamical Systems

被引:6
|
作者
Rodriguez, Antonio [1 ]
Pluchino, Alessandro [2 ,3 ]
Tirnakli, Ugur [4 ]
Rapisarda, Andrea [3 ,5 ]
Tsallis, Constantino [5 ,6 ,7 ,8 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada Ingn Aerosp, GISC, Plaza Cardenal Cisneros S-N, Madrid 28040, Spain
[2] Ist Nazl Fis Nucl, Sez Catania, I-95123 Catania, Italy
[3] Univ Catania, Dipartimento Fis & Astron E Majorana, I-95123 Catania, Italy
[4] Izmir Univ Econ, Fac Arts & Sci, Dept Phys, TR-35330 Izmir, Turkiye
[5] Complex Sci Hub Vienna, Josefstadterstr 39, A-1090 Vienna, Austria
[6] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
[7] Natl Inst Sci & Technol Complex Syst, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
[8] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
nonextensive statistical mechanics; long-range dynamical systems; entropy; complex systems; POWER-LAW SENSITIVITY; MEAN-FIELD MODEL; INITIAL CONDITIONS; MOLECULAR-FIELDS; KURAMOTO MODEL; RANGE; MAPS; ENTROPY; BOLTZMANN; EDGE;
D O I
10.3390/sym15020444
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite its centennial successes in describing physical systems at thermal equilibrium, Boltzmann-Gibbs (BG) statistical mechanics have exhibited, in the last several decades, several flaws in addressing out-of-equilibrium dynamics of many nonlinear complex systems. In such circumstances, it has been shown that an appropriate generalization of the BG theory, known as nonextensive statistical mechanics and based on nonadditive entropies, is able to satisfactorily handle wide classes of anomalous emerging features and violations of standard equilibrium prescriptions, such as ergodicity, mixing, breakdown of the symmetry of homogeneous occupancy of phase space, and related features. In the present study, we review various important results of nonextensive statistical mechanics for dissipative and conservative dynamical systems. In particular, we discuss applications to both discrete-time systems with a few degrees of freedom and continuous-time ones with many degrees of freedom, as well as to asymptotically scale-free networks and systems with diverse dimensionalities and ranges of interactions, of either classical or quantum nature.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Two-Parameter Entropies in Extended Parastatistics of Nonextensive Systems
    Zaripov, R. G.
    RUSSIAN PHYSICS JOURNAL, 2020, 63 (07) : 1103 - 1111
  • [22] Two-Parameter Entropies in Extended Parastatistics of Nonextensive Systems
    R. G. Zaripov
    Russian Physics Journal, 2020, 63 : 1103 - 1111
  • [23] Estimation of Dynamical Noise Power in Unknown Systems
    Scarciglia, Andrea
    Gini, Fulvio
    Catrambone, Vincenzo
    Bonanno, Claudio
    Valenza, Gaetano
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 234 - 238
  • [24] Entropy analysis of integer and fractional dynamical systems
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2010, 62 : 371 - 378
  • [25] AN INTRODUCTION TO QUANTITATIVE POINCARE RECURRENCE IN DYNAMICAL SYSTEMS
    Saussol, Benoit
    REVIEWS IN MATHEMATICAL PHYSICS, 2009, 21 (08) : 949 - 979
  • [26] Entropy analysis of integer and fractional dynamical systems
    Machado, J. A. Tenreiro
    NONLINEAR DYNAMICS, 2010, 62 (1-2) : 371 - 378
  • [27] Editorial Comment on the Special Issue of "Information in Dynamical Systems and Complex Systems"
    Bollt, Erik M.
    Sun, Jie
    ENTROPY, 2014, 16 (09): : 5068 - 5077
  • [28] Sensitivity and specification property of fuzzified dynamical systems
    Li, Nan
    Wang, Lidong
    Lei, Fengchun
    MODERN PHYSICS LETTERS B, 2018, 32 (23):
  • [29] Dissipative structures in nature and human systems
    Tiezzi, E. B. P.
    Pulselli, R. M.
    Marchettini, N.
    Tiezzi, E.
    DESIGN AND NATURE IV: COMPARING DESIGN IN NATURE WITH SCIENCE AND ENGINEERING, 2008, 114 : 293 - +
  • [30] Computability and Dynamical Systems
    Buescu, J.
    Graca, D. S.
    Zhong, N.
    DYNAMICS, GAMES AND SCIENCE I, 2011, 1 : 169 - 181